The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice...The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice blocks in front of the ice cover are analyzed. The critical criteria for the entrainment of ice blocks in front of the ice cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an ice block will be entrained under the ice cover is derived. All three dimensions of the ice block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of ice blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.展开更多
During winter, ice jams develop when floating ice blocks accumulate in rivers. Ice jams can dramatically decrease in the capacity of flow in a river and can cause ice flooding due to increase in water level. Submergen...During winter, ice jams develop when floating ice blocks accumulate in rivers. Ice jams can dramatically decrease in the capacity of flow in a river and can cause ice flooding due to increase in water level. Submergence of floating ice blocks in front of ice cover is critical for the development of an ice jam. In this study, the effect of the rotation angle of ice blocks on the submergence of ice block was assessed. The impacts of both the drag force caused by the flow and the hydraulic pressure force on the rotation of ice block were studied. Considering both the maximum moment for anti-overturn of an ice block, and the associated rotation angle </span><i><span style="font-family:Verdana;">θ</span></i><sub><span style="font-family:Verdana;font-size:12px;">1</span></sub><span style="font-family:Verdana;">, equations for describing the criteria for ice block entrainment in front of ice cover have been derived. On the basis of the theorem for moment equilibrium, relating the moment acting on a horizontal ice block with the maximum anti-overturn moment of an ice block, the criteria for assessing the overturn-and-submergence of an ice block have been proposed. To verify results using the derived equations for calculating the critical flow velocity for ice block submergence in front of ice cover, data was collected from flume experiments in the laboratory. Experiments have been conducted using different sizes of ice block under different flow conditions in a flume which is 26.68 m long, 0.40 m wide, and 0.6 m deep. Model ice blocks were </span><span style="font-family:Verdana;">made of polypropylene </span><span style="font-family:Verdana;">and have</span><span style="font-family:Verdana;"> nearly the same as the mass density of the nat</span><span style="font-family:Verdana;">ural ice. Using proposed method for assessing ice block submergence in front of ice cover, calculated critical flow velocities agree well with those of experi</span><span style="font-family:Verdana;">ments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51379054)
文摘The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice blocks in front of the ice cover are analyzed. The critical criteria for the entrainment of ice blocks in front of the ice cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an ice block will be entrained under the ice cover is derived. All three dimensions of the ice block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of ice blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.
文摘During winter, ice jams develop when floating ice blocks accumulate in rivers. Ice jams can dramatically decrease in the capacity of flow in a river and can cause ice flooding due to increase in water level. Submergence of floating ice blocks in front of ice cover is critical for the development of an ice jam. In this study, the effect of the rotation angle of ice blocks on the submergence of ice block was assessed. The impacts of both the drag force caused by the flow and the hydraulic pressure force on the rotation of ice block were studied. Considering both the maximum moment for anti-overturn of an ice block, and the associated rotation angle </span><i><span style="font-family:Verdana;">θ</span></i><sub><span style="font-family:Verdana;font-size:12px;">1</span></sub><span style="font-family:Verdana;">, equations for describing the criteria for ice block entrainment in front of ice cover have been derived. On the basis of the theorem for moment equilibrium, relating the moment acting on a horizontal ice block with the maximum anti-overturn moment of an ice block, the criteria for assessing the overturn-and-submergence of an ice block have been proposed. To verify results using the derived equations for calculating the critical flow velocity for ice block submergence in front of ice cover, data was collected from flume experiments in the laboratory. Experiments have been conducted using different sizes of ice block under different flow conditions in a flume which is 26.68 m long, 0.40 m wide, and 0.6 m deep. Model ice blocks were </span><span style="font-family:Verdana;">made of polypropylene </span><span style="font-family:Verdana;">and have</span><span style="font-family:Verdana;"> nearly the same as the mass density of the nat</span><span style="font-family:Verdana;">ural ice. Using proposed method for assessing ice block submergence in front of ice cover, calculated critical flow velocities agree well with those of experi</span><span style="font-family:Verdana;">ments.