建立了MVR高盐废水蒸发结晶系统的模型并对其过程进行模拟,模拟结果与现场数据吻合较好。同时分析了工艺参数压缩比、系统操作压力对能效比COP和强制循环加热器传热温差的影响,获得了优化工艺参数,压缩比为1.7~2,蒸发结晶器操作压力为45...建立了MVR高盐废水蒸发结晶系统的模型并对其过程进行模拟,模拟结果与现场数据吻合较好。同时分析了工艺参数压缩比、系统操作压力对能效比COP和强制循环加热器传热温差的影响,获得了优化工艺参数,压缩比为1.7~2,蒸发结晶器操作压力为45~60 k Pa。该研究结果对优化MVR蒸发结晶系统过程参数以实现高盐废水节能零排放处理有重要的指导意义。展开更多
Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of...Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.展开更多
文摘建立了MVR高盐废水蒸发结晶系统的模型并对其过程进行模拟,模拟结果与现场数据吻合较好。同时分析了工艺参数压缩比、系统操作压力对能效比COP和强制循环加热器传热温差的影响,获得了优化工艺参数,压缩比为1.7~2,蒸发结晶器操作压力为45~60 k Pa。该研究结果对优化MVR蒸发结晶系统过程参数以实现高盐废水节能零排放处理有重要的指导意义。
基金supported by the National Natural Science Foundation of China(Nos.52200111,51978651,and 51878049)the China Postdoctoral Science Foundation(No.2021M703407)the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.21Z01ESPCR)。
文摘Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.