A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic...A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.展开更多
In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a...In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.展开更多
基金supported by the National Natural Science Foundation of China (60763009)the Science and Technology Key Project of the Ministry of Education of China (207089)Zhejiang Natural Science Foundation of Outstanding Youth Team Project (R1090138)
文摘A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.
基金Supported by the National Key Basic Research Project of China under Grant No. 2004CB318000
文摘In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.