聚酰胺反渗透膜是目前广泛应用的一款商用化水处理膜。然而其表面活性层聚酰胺的结构致密,会导致水通量与截盐率出现“trade-off”现象。针对该问题提出,选择具有多孔结构的、亲水性超交联聚合物复合材料作为添加剂,在界面聚合过程中引...聚酰胺反渗透膜是目前广泛应用的一款商用化水处理膜。然而其表面活性层聚酰胺的结构致密,会导致水通量与截盐率出现“trade-off”现象。针对该问题提出,选择具有多孔结构的、亲水性超交联聚合物复合材料作为添加剂,在界面聚合过程中引入聚酰胺活性层中,为水分子提供更多水通道。同时,纯烃本质的超交联聚合物与聚酰胺的高度相容性,保证了反渗透复合膜的高效截盐性能。经过脱盐性能测试,结果显示添加3.0 mg PDA@HCP-B-SO_(3)H的反渗透复合膜具有最高的水通量为44.4 L·m^(-2)·h^(-1),截盐率高达99.6%。相比于聚酰胺反渗膜,3.0-PDA@HCP-B-SO_(3)H PA RO的水通量提升了26.5%,截盐率基本保持不变;相比于只嫁接-SO_(3)H的HCP-B-SO_(3)H PA RO,水通量提升了11.6%(35.0 L·m^(-2)·h^(-1)上升至39.8 L·m^(-2)·h^(-1)),截盐率基本持平。这说明添加具有多孔结构的、亲水性强的改性超交联聚合物作为添加剂,是一种十分有效地提升聚酰胺反渗透膜性能的方法。展开更多
Fluorinated porous organic networks(F-PONs)have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free...Fluorinated porous organic networks(F-PONs)have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported.Herein,using polydivinylbenzene(PDVB)as an easily available precursor,a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Bronsted acid(trifluoromethanesulfonic acid).The afforded material(F-PDVB)featured high fluorine content(22 at.%),large surface area(771 m^(2)·g^(-1)),and good chemical/thermal stability,rendering them as promising candidates for the adsorption of CO_(2),hydrocarbons,fluorocarbons,and chlorofluorocarbons,with weight capacities up to 520 wt.%being achieved.This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers(F-HCPs)from rigid aromatic monomers.The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.展开更多
Separation media that combine the desired material properties within a single material for a given process remain an ongoing challenge for the gas separations in industry.Process integration of porous solid adsorbents...Separation media that combine the desired material properties within a single material for a given process remain an ongoing challenge for the gas separations in industry.Process integration of porous solid adsorbents is difficult due to their limited volumetric capacity,whereas issues of volatility and high regeneration temperatures exist for liquid amines and physical solvents.Herein,we report a family of polymer liquids inspired by hyper-crosslinked polymers(HCPs),a class of highly swellable network polymers.Compared with a chemically similar porous solid,the HCP-liquids demonstrate good volumetric capacity and improved selectivity of carbon dioxide over methane.Uptake appears to be enhanced by intramolecular swelling of the HCP-liquids at elevated pressures,while guests are strongly rejected from the HCP-liquids at slightly elevated temperatures,leading to highly efficient regeneration.Heat of adsorption and specific heat capacity of the HCP-liquids are also low,further suggesting favourable process thermodynamics.Additionally being easily prepared at scale,the presented HCP-liquids represent a promising step towards a material with the requisite properties to replace conventional scrubbing solvents to drastically reduce the footprint and energy needs of gas separations.展开更多
文摘聚酰胺反渗透膜是目前广泛应用的一款商用化水处理膜。然而其表面活性层聚酰胺的结构致密,会导致水通量与截盐率出现“trade-off”现象。针对该问题提出,选择具有多孔结构的、亲水性超交联聚合物复合材料作为添加剂,在界面聚合过程中引入聚酰胺活性层中,为水分子提供更多水通道。同时,纯烃本质的超交联聚合物与聚酰胺的高度相容性,保证了反渗透复合膜的高效截盐性能。经过脱盐性能测试,结果显示添加3.0 mg PDA@HCP-B-SO_(3)H的反渗透复合膜具有最高的水通量为44.4 L·m^(-2)·h^(-1),截盐率高达99.6%。相比于聚酰胺反渗膜,3.0-PDA@HCP-B-SO_(3)H PA RO的水通量提升了26.5%,截盐率基本保持不变;相比于只嫁接-SO_(3)H的HCP-B-SO_(3)H PA RO,水通量提升了11.6%(35.0 L·m^(-2)·h^(-1)上升至39.8 L·m^(-2)·h^(-1)),截盐率基本持平。这说明添加具有多孔结构的、亲水性强的改性超交联聚合物作为添加剂,是一种十分有效地提升聚酰胺反渗透膜性能的方法。
基金supported financially by the Division of Chemical Sciences,Geosciences,and Biosciences,Office of Basic Energy Sciences,US Department of Energy.
文摘Fluorinated porous organic networks(F-PONs)have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported.Herein,using polydivinylbenzene(PDVB)as an easily available precursor,a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Bronsted acid(trifluoromethanesulfonic acid).The afforded material(F-PDVB)featured high fluorine content(22 at.%),large surface area(771 m^(2)·g^(-1)),and good chemical/thermal stability,rendering them as promising candidates for the adsorption of CO_(2),hydrocarbons,fluorocarbons,and chlorofluorocarbons,with weight capacities up to 520 wt.%being achieved.This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers(F-HCPs)from rigid aromatic monomers.The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.
基金funding from Australian research council(F T1301000345)。
文摘Separation media that combine the desired material properties within a single material for a given process remain an ongoing challenge for the gas separations in industry.Process integration of porous solid adsorbents is difficult due to their limited volumetric capacity,whereas issues of volatility and high regeneration temperatures exist for liquid amines and physical solvents.Herein,we report a family of polymer liquids inspired by hyper-crosslinked polymers(HCPs),a class of highly swellable network polymers.Compared with a chemically similar porous solid,the HCP-liquids demonstrate good volumetric capacity and improved selectivity of carbon dioxide over methane.Uptake appears to be enhanced by intramolecular swelling of the HCP-liquids at elevated pressures,while guests are strongly rejected from the HCP-liquids at slightly elevated temperatures,leading to highly efficient regeneration.Heat of adsorption and specific heat capacity of the HCP-liquids are also low,further suggesting favourable process thermodynamics.Additionally being easily prepared at scale,the presented HCP-liquids represent a promising step towards a material with the requisite properties to replace conventional scrubbing solvents to drastically reduce the footprint and energy needs of gas separations.