Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with ...Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes.Increasing each individual photon’s channel capacity is an efficient way to increase the key generation rate, and high-dimensional(HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom(DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure,even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.展开更多
Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-indep...Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing(MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10^(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.展开更多
Quantum secure direct communication(QSDC)can directly transmit secret messages through quantum channel without keys.Device-independent(DI)QSDC guarantees the message security relying only on the observation of the Bel...Quantum secure direct communication(QSDC)can directly transmit secret messages through quantum channel without keys.Device-independent(DI)QSDC guarantees the message security relying only on the observation of the Bell-inequality violation,but not on any detailed description or trust of the devices'inner workings.Compared with conventional QSDC,DI-QSDC has relatively low secret message capacity.To increase DI-QSDC's secret messages capacity,we propose a high-capacity DI-QSDC protocol based on the hyper-encoding technique.The total message leakage rate of our DI-QSDC protocol only relies on the most robust degree of freedom.We provide the numerical simulation of its secret message capacity altered with the communication distance.Our work serves as an important step toward thefurther development of DI-QSDC systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11974189)the China Postdoctoral Science Foundation(Grant No.2018M642293)+1 种基金the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education(Grant No.JZNY201908)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes.Increasing each individual photon’s channel capacity is an efficient way to increase the key generation rate, and high-dimensional(HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom(DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure,even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974189 and 12175106)。
文摘Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing(MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10^(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.
基金the National Natural Science Foundation of China(11974189,12175106 and 92365110)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22-0900).
文摘Quantum secure direct communication(QSDC)can directly transmit secret messages through quantum channel without keys.Device-independent(DI)QSDC guarantees the message security relying only on the observation of the Bell-inequality violation,but not on any detailed description or trust of the devices'inner workings.Compared with conventional QSDC,DI-QSDC has relatively low secret message capacity.To increase DI-QSDC's secret messages capacity,we propose a high-capacity DI-QSDC protocol based on the hyper-encoding technique.The total message leakage rate of our DI-QSDC protocol only relies on the most robust degree of freedom.We provide the numerical simulation of its secret message capacity altered with the communication distance.Our work serves as an important step toward thefurther development of DI-QSDC systems.