The factors affecting the electrooxidation of hydroxypivalaldehyde(HPAL) in an undivided cell were studied by using cyclic voltammetry(CV), linear scan voltammetry( LSV), and potentiostatic electrolysis. The ele...The factors affecting the electrooxidation of hydroxypivalaldehyde(HPAL) in an undivided cell were studied by using cyclic voltammetry(CV), linear scan voltammetry( LSV), and potentiostatic electrolysis. The electrocatalytic activity and stability of a PbO2 electrode in sulfuric acid, acetic acid, and phosphoric acid were studied. The selectivity and the current efficiency for producing hydroxypivalic acid were explored with different supporting electrolytes, concentrations of HPAL, and pH values. The results show that higher selectivity and current efficiency for producing hydroxypivalic acid can be achieved when sulfuric acid with a high concentration is used as the supporting electrolyte and the selectivity and the current efficiency can reach 80% and 60%. resvectively.展开更多
The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, C4MIMPF6, C4MIMBF4 and CsMIMPF6, are investigated using classic electrochemical methods, respectively. Only the ...The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, C4MIMPF6, C4MIMBF4 and CsMIMPF6, are investigated using classic electrochemical methods, respectively. Only the product, hydroxypivalic acid is detected by high performance liquid chromatography (HPLC). It can be conferred that the electrochemical oxidation of hydroxypivalaldehyde consists of two successive one-electron irreversible reactions at glass carbon (GC) electrode and the possible reaction mechanism in the ILs is proposed firstly. The diffusion coefficients of hydroxypivalaldehyde are obtained according to the electrochemical characteristics of hydroxypivalaldehyde in C4MIMPF6, C4MIMBF4 and CsMIMPF6.展开更多
羟基新戊醛是合成多种精细化学品的重要中间体。以叔胺溶液为催化剂,利用正交实验法优化了甲醛异丁醛缩合制备羟基新戊醛的工艺条件,并考察了缩合反应动力学。由正交实验结果得到最佳反应条件为:催化剂的用量为3%质量分数,反应温度75℃...羟基新戊醛是合成多种精细化学品的重要中间体。以叔胺溶液为催化剂,利用正交实验法优化了甲醛异丁醛缩合制备羟基新戊醛的工艺条件,并考察了缩合反应动力学。由正交实验结果得到最佳反应条件为:催化剂的用量为3%质量分数,反应温度75℃,甲醛与异丁醛的物质的量之比为1.1:1,反应压力0.3 MPa,反应时间80 min,在此条件下产物收率可达98.33%。动力学的研究结果表明:缩合主副反应的表观活化能分别为40.801 k J/mol和64.088 k J/mol;主反应对异丁醛、甲醛反应级数分别为1和1.2,副反应对羟基新戊醛的反应级数为2。通过残差分析和统计检验,表明动力学模型是适定的。展开更多
基金Supported by the National Natural Science Foundation of China(No. 20373020).
文摘The factors affecting the electrooxidation of hydroxypivalaldehyde(HPAL) in an undivided cell were studied by using cyclic voltammetry(CV), linear scan voltammetry( LSV), and potentiostatic electrolysis. The electrocatalytic activity and stability of a PbO2 electrode in sulfuric acid, acetic acid, and phosphoric acid were studied. The selectivity and the current efficiency for producing hydroxypivalic acid were explored with different supporting electrolytes, concentrations of HPAL, and pH values. The results show that higher selectivity and current efficiency for producing hydroxypivalic acid can be achieved when sulfuric acid with a high concentration is used as the supporting electrolyte and the selectivity and the current efficiency can reach 80% and 60%. resvectively.
文摘The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, C4MIMPF6, C4MIMBF4 and CsMIMPF6, are investigated using classic electrochemical methods, respectively. Only the product, hydroxypivalic acid is detected by high performance liquid chromatography (HPLC). It can be conferred that the electrochemical oxidation of hydroxypivalaldehyde consists of two successive one-electron irreversible reactions at glass carbon (GC) electrode and the possible reaction mechanism in the ILs is proposed firstly. The diffusion coefficients of hydroxypivalaldehyde are obtained according to the electrochemical characteristics of hydroxypivalaldehyde in C4MIMPF6, C4MIMBF4 and CsMIMPF6.
文摘羟基新戊醛是合成多种精细化学品的重要中间体。以叔胺溶液为催化剂,利用正交实验法优化了甲醛异丁醛缩合制备羟基新戊醛的工艺条件,并考察了缩合反应动力学。由正交实验结果得到最佳反应条件为:催化剂的用量为3%质量分数,反应温度75℃,甲醛与异丁醛的物质的量之比为1.1:1,反应压力0.3 MPa,反应时间80 min,在此条件下产物收率可达98.33%。动力学的研究结果表明:缩合主副反应的表观活化能分别为40.801 k J/mol和64.088 k J/mol;主反应对异丁醛、甲醛反应级数分别为1和1.2,副反应对羟基新戊醛的反应级数为2。通过残差分析和统计检验,表明动力学模型是适定的。