Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era.Although separate liquid chromatography(LC) methods for quantification of the major classes of polar metabolit...Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era.Although separate liquid chromatography(LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades,a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography-mass spectrometry(GC-MS) techniques.The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC-MS based methods for multitarget quantification of polar metabolites.Although various LC-MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices,currently there is no consensus LC-MS method that is widely used in plant metabolomics studies.The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted.The aim of this review is to provide plant scientists,with limited to moderate experience in analytical chemistry,with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC-MS techniques.展开更多
RNA modification has recently been proposed to play important roles in biological regulation. The detection and quantification of RNA modifications generally are challenging tasks since most of the modifications exist...RNA modification has recently been proposed to play important roles in biological regulation. The detection and quantification of RNA modifications generally are challenging tasks since most of the modifications exist in low abundance in vivo. Here we developed an on-line trapping/capillary hydrophilic-interaction liquid chromatography/electrospray ionization-mass spectrometry(on-line trapping/cHILIC/MS) method for sensitive and simultaneous quantification of RNA modifications of N^6-methyladenosine(m^6A) and 5-methylcytosine(5-mC) from human blood. The hydrophilic organic-silica hybrid monolith was prepared using sol-gel combined with "thiol-ene" click reaction for the separation of nucleosides. A poly(MAA-co-EGDMA) monolithic capillary was used as the on-line trapping column.With the developed on-line trapping/cHILIC/MS analytical platform, the detection limits of m^6A and 5-mC can reach to 0.06 fmol and 0.10 fmol. We then investigated the contents of m^6A and 5-mC in human blood RNA from healthy persons at the age of 6-14 and 60-68 years. Our results showed that both m^6A and 5-mC contents were significantly decreased in elder persons, suggesting the RNA modifications of m^6A and 5-mC are correlated to aging.展开更多
基金funded by the Dairy Futures Co-operative Research Centre
文摘Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era.Although separate liquid chromatography(LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades,a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography-mass spectrometry(GC-MS) techniques.The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC-MS based methods for multitarget quantification of polar metabolites.Although various LC-MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices,currently there is no consensus LC-MS method that is widely used in plant metabolomics studies.The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted.The aim of this review is to provide plant scientists,with limited to moderate experience in analytical chemistry,with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC-MS techniques.
基金financially supported by the National Natural Science Foundation of China (Nos. 21522507, 21672166, 21728802, 21721005)
文摘RNA modification has recently been proposed to play important roles in biological regulation. The detection and quantification of RNA modifications generally are challenging tasks since most of the modifications exist in low abundance in vivo. Here we developed an on-line trapping/capillary hydrophilic-interaction liquid chromatography/electrospray ionization-mass spectrometry(on-line trapping/cHILIC/MS) method for sensitive and simultaneous quantification of RNA modifications of N^6-methyladenosine(m^6A) and 5-methylcytosine(5-mC) from human blood. The hydrophilic organic-silica hybrid monolith was prepared using sol-gel combined with "thiol-ene" click reaction for the separation of nucleosides. A poly(MAA-co-EGDMA) monolithic capillary was used as the on-line trapping column.With the developed on-line trapping/cHILIC/MS analytical platform, the detection limits of m^6A and 5-mC can reach to 0.06 fmol and 0.10 fmol. We then investigated the contents of m^6A and 5-mC in human blood RNA from healthy persons at the age of 6-14 and 60-68 years. Our results showed that both m^6A and 5-mC contents were significantly decreased in elder persons, suggesting the RNA modifications of m^6A and 5-mC are correlated to aging.