The mid-long term hydrology forecasting is one of most challenging problems in hydrological studies. This paper proposes an efficient dynamical system prediction model using evolutionary computation techniques. The ne...The mid-long term hydrology forecasting is one of most challenging problems in hydrological studies. This paper proposes an efficient dynamical system prediction model using evolutionary computation techniques. The new model overcomes some disadvantages of conventional hydrology forecasting ones. The observed data is divided into two parts; the slow 'smooth and steady' data, and the fast 'coarse and fluctuation' data. Under the divide and conquer strategy, the behavior of smooth data is modeled by ordinary differential equations based on evolutionary modeling, and that of the coarse data is modeled using gray correlative forecasting method. Our model is verified on the test data of the mid-long term hydrology forecast in the northeast region of China. The experimental results show that the model is superior to gray system prediction model (GSPM).展开更多
Statistical analyses and descriptive characterizations are sometimes assumed to be offering information on time series forecastability.Despite the scientific interest suggested by such assumptions,the relationships be...Statistical analyses and descriptive characterizations are sometimes assumed to be offering information on time series forecastability.Despite the scientific interest suggested by such assumptions,the relationships between descriptive time series features(e.g.,temporal dependence,entropy,seasonality,trend and linearity features)and actual time series forecastability(quantified by issuing and assessing forecasts for the past)are scarcely studied and quantified in the literature.In this work,we aim to fill in this gap by investigating such relationships,and the way that they can be exploited for understanding hydroclimatic forecastability and its patterns.To this end,we follow a systematic framework bringing together a variety of–mostly new for hydrology–concepts and methods,including 57 descriptive features and nine seasonal time series forecasting methods(i.e.,one simple,five exponential smoothing,two state space and one automated autoregressive fractionally integrated moving average methods).We apply this framework to three global datasets originating from the larger Global Historical Climatology Network(GHCN)and Global Streamflow Indices and Metadata(GSIM)archives.As these datasets comprise over 13,000 monthly temperature,precipitation and river flow time series from several continents and hydroclimatic regimes,they allow us to provide trustable characterizations and interpretations of 12-month ahead hydroclimatic forecastability at the global scale.We first find that the exponential smoothing and state space methods for time series forecasting are rather equally efficient in identifying an upper limit of this forecastability in terms of Nash-Sutcliffe efficiency,while the simple method is shown to be mostly useful in identifying its lower limit.We then demonstrate that the assessed forecastability is strongly related to several descriptive features,including seasonality,entropy,(partial)autocorrelation,stability,(non)linearity,spikiness and heterogeneity features,among others.We further(i)show that,if such展开更多
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘The mid-long term hydrology forecasting is one of most challenging problems in hydrological studies. This paper proposes an efficient dynamical system prediction model using evolutionary computation techniques. The new model overcomes some disadvantages of conventional hydrology forecasting ones. The observed data is divided into two parts; the slow 'smooth and steady' data, and the fast 'coarse and fluctuation' data. Under the divide and conquer strategy, the behavior of smooth data is modeled by ordinary differential equations based on evolutionary modeling, and that of the coarse data is modeled using gray correlative forecasting method. Our model is verified on the test data of the mid-long term hydrology forecast in the northeast region of China. The experimental results show that the model is superior to gray system prediction model (GSPM).
基金Funding from the Italian Ministry of Environment, Land and Sea Protection (MATTM) for the Sim PRO project (2020–2021) is acknowledged by (in alphabetical order): S. Grimaldi, G. Papacharalampous and E. Volpifunding from the Italian Ministry of Education, University and Research (MIUR), in the frame of the Departments of Excellence Initiative 2018–2022, attributed to the Department of Engineering of Roma Tre Universityfunding from the EU Horizon 2020 project CLINT (Climate Intelligence: Extreme events detection, attribution and adaptation design using machine learning) under Grant Agreement 101003876
文摘Statistical analyses and descriptive characterizations are sometimes assumed to be offering information on time series forecastability.Despite the scientific interest suggested by such assumptions,the relationships between descriptive time series features(e.g.,temporal dependence,entropy,seasonality,trend and linearity features)and actual time series forecastability(quantified by issuing and assessing forecasts for the past)are scarcely studied and quantified in the literature.In this work,we aim to fill in this gap by investigating such relationships,and the way that they can be exploited for understanding hydroclimatic forecastability and its patterns.To this end,we follow a systematic framework bringing together a variety of–mostly new for hydrology–concepts and methods,including 57 descriptive features and nine seasonal time series forecasting methods(i.e.,one simple,five exponential smoothing,two state space and one automated autoregressive fractionally integrated moving average methods).We apply this framework to three global datasets originating from the larger Global Historical Climatology Network(GHCN)and Global Streamflow Indices and Metadata(GSIM)archives.As these datasets comprise over 13,000 monthly temperature,precipitation and river flow time series from several continents and hydroclimatic regimes,they allow us to provide trustable characterizations and interpretations of 12-month ahead hydroclimatic forecastability at the global scale.We first find that the exponential smoothing and state space methods for time series forecasting are rather equally efficient in identifying an upper limit of this forecastability in terms of Nash-Sutcliffe efficiency,while the simple method is shown to be mostly useful in identifying its lower limit.We then demonstrate that the assessed forecastability is strongly related to several descriptive features,including seasonality,entropy,(partial)autocorrelation,stability,(non)linearity,spikiness and heterogeneity features,among others.We further(i)show that,if such