The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6...The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.展开更多
Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicat...Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicate compressed gas's physical properties,threatening operational safety of the electricity-HCNG-integrated energy system(E-HCNG-IES).To resolve such problem,this paper investigates effect of HCNG on gas network dynamics and presents an improved HCNG network model,which embodies the influence of blending hydrogen on the pressure drop equation and line pack equation.In addition,an optimal dispatch model for the E-HCNG-IES,considering the“production-storage-blending-transportation-utilization”link of the HCNG supply chain,is also proposed.The dispatch model is converted into a mixed-integer second-order conic programming(MISOCP)problem using the second-order cone(SOC)relaxation and piecewise linearization techniques.An iterative algorithm is proposed based on the convex-concave procedure and bound-tightening method to obtain a tight solution.Finally,the proposed methodology is evaluated through two E-HCNGIES numerical testbeds with different hydrogen volume fractions.Detailed operation analysis reveals that E-HCNG-IES can benefit from economic and environmental improvement with increased hydrogen volume fraction,despite declining energy delivery capacityand line pack flexibility.展开更多
文摘The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.
基金supported in part by the Science and Technology Project of State Grid Corporation of China(No.5100-202119574A-0-5-SF)。
文摘Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicate compressed gas's physical properties,threatening operational safety of the electricity-HCNG-integrated energy system(E-HCNG-IES).To resolve such problem,this paper investigates effect of HCNG on gas network dynamics and presents an improved HCNG network model,which embodies the influence of blending hydrogen on the pressure drop equation and line pack equation.In addition,an optimal dispatch model for the E-HCNG-IES,considering the“production-storage-blending-transportation-utilization”link of the HCNG supply chain,is also proposed.The dispatch model is converted into a mixed-integer second-order conic programming(MISOCP)problem using the second-order cone(SOC)relaxation and piecewise linearization techniques.An iterative algorithm is proposed based on the convex-concave procedure and bound-tightening method to obtain a tight solution.Finally,the proposed methodology is evaluated through two E-HCNGIES numerical testbeds with different hydrogen volume fractions.Detailed operation analysis reveals that E-HCNG-IES can benefit from economic and environmental improvement with increased hydrogen volume fraction,despite declining energy delivery capacityand line pack flexibility.