A series of extensive laboratory experiments were conducted to investigate the transport and mixing of instantaneous discharge of unsorted particle cloud in cross-flow. The following experimental results were obtained...A series of extensive laboratory experiments were conducted to investigate the transport and mixing of instantaneous discharge of unsorted particle cloud in cross-flow. The following experimental results were obtained: (1) the vertical frontal position and the longitudinal width of the particle cloud in the cross-flow is much larger than those in stagnant water, (2) the smaller cross-flow velocity will normally cause the larger non-dimensional frontal position for the same particle size range and initial volume, (3) the non-dimensional longitudinal width of the particle cloud in the cross-flow increases with the increase of cross-flow velocity. The empirical constants (α1, α3 and α2) and their variance range, which can be used to determine the relationships of non-dimensional vertical frontal position and time, longitudinal width and time, and vertical frontal position and longitudinal width were also obtained through the analysis of experimental data.展开更多
The hydro-geologic stages in the Biyang Depression, Henan Province, were defined and factors controlling the evolution of the hydrodynamic field in this area were analyzed. The evolution of the paleo-hydrodynamic fiel...The hydro-geologic stages in the Biyang Depression, Henan Province, were defined and factors controlling the evolution of the hydrodynamic field in this area were analyzed. The evolution of the paleo-hydrodynamic field was studied by using the method of sedimentary-water-head and the changing patterns of the present hydrodynamic field as determined from measured pressure data. The results show that the evolution of the hydrodynamic field is one of inheritance and that it controls hydrocarbon accumulation. The deposition center in the southeast of the depression is always a high-value zone for water-head and a dynamic- source zone of the hydrodynamic field. The slope zone in the northwest of the depression is always a low-value zone for water-head and is the main discharge area for groundwater; this is the hydrocarbon accumulation zone. Hydrocarbon accumulation is controlled by the hydrodynamic field. The reservoir shows a ring-shaped horizontal pattern. Accumulation occurs in a pressure equilibrium zone at the frontal surface between sedimentary water and infiltrating water. The hydrocarbon accumulations occur in two vertically different discharge units, Eh31 and Eh32, under the action of overpressure.展开更多
Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric p...Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
基金the Key Subject of Shanghai Education Committee (Grant No. J50702).
文摘A series of extensive laboratory experiments were conducted to investigate the transport and mixing of instantaneous discharge of unsorted particle cloud in cross-flow. The following experimental results were obtained: (1) the vertical frontal position and the longitudinal width of the particle cloud in the cross-flow is much larger than those in stagnant water, (2) the smaller cross-flow velocity will normally cause the larger non-dimensional frontal position for the same particle size range and initial volume, (3) the non-dimensional longitudinal width of the particle cloud in the cross-flow increases with the increase of cross-flow velocity. The empirical constants (α1, α3 and α2) and their variance range, which can be used to determine the relationships of non-dimensional vertical frontal position and time, longitudinal width and time, and vertical frontal position and longitudinal width were also obtained through the analysis of experimental data.
文摘为了研究雨水口泄流对城市洪涝的影响,建立包含雨水口泄流计算模块的平面二维水动力学模型.采用典型街区结构的水槽试验数据对模型进行率定和验证,超过85%的测点纳什效率系数大于0.77.将模型应用到英国Glasgow的城市街区,采用综合流速公式和孔流堰流公式计算的排水总量最大差值占总水量的26.5%,前者考虑侧支管对雨水口泄流能力的限制作用,更符合实际情况.与不考虑雨水口泄流相比,采用综合流速公式计算雨水口泄流后,最大淹没范围减少29.4%,主干道上最大积水水深减小0.395 m,最大积水水深处的洪水波到达时间延后100 s.
基金support for this work, provided by the SINOPEC foundation (CW800-07-ZS-165-01)doctor’s foundation of Henan Polytechnic University (648167)
文摘The hydro-geologic stages in the Biyang Depression, Henan Province, were defined and factors controlling the evolution of the hydrodynamic field in this area were analyzed. The evolution of the paleo-hydrodynamic field was studied by using the method of sedimentary-water-head and the changing patterns of the present hydrodynamic field as determined from measured pressure data. The results show that the evolution of the hydrodynamic field is one of inheritance and that it controls hydrocarbon accumulation. The deposition center in the southeast of the depression is always a high-value zone for water-head and a dynamic- source zone of the hydrodynamic field. The slope zone in the northwest of the depression is always a low-value zone for water-head and is the main discharge area for groundwater; this is the hydrocarbon accumulation zone. Hydrocarbon accumulation is controlled by the hydrodynamic field. The reservoir shows a ring-shaped horizontal pattern. Accumulation occurs in a pressure equilibrium zone at the frontal surface between sedimentary water and infiltrating water. The hydrocarbon accumulations occur in two vertically different discharge units, Eh31 and Eh32, under the action of overpressure.
基金supported by National Natural Science Foundation of China(No.51077032)
文摘Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF6-N2-CO2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo-spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.