The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their ch...The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their characterization and the analysis of hydrosedimentary dynamics is the second step of the investigation of the solid flow transport in the Mono river. This study aims to quantify the volume of trapped sediments in function of the variation of the geometry of the shape of sections of the river depending of the slope and the flow rate therefore to evaluate the capacity of transport of eroded solid flows of a watercourse from upstream to downstream. Consequently, the decreasing percentage of deposited alluvium from upstream to downstream is calculated along Mono river. Thus the drawn granulometric curve of sediments and the determinate granulometric characteristics of sediments permit to quantify the carried sediment charges at each chosen section with Engelund-Hansen model in Mono river.展开更多
Mangrove forest is one of the most important ecological and environmental resources by effectively promoting tidal flat deposition and preventing the coastal region from typhoon.However,there have been mass loss of ma...Mangrove forest is one of the most important ecological and environmental resources by effectively promoting tidal flat deposition and preventing the coastal region from typhoon.However,there have been mass loss of mangrove forests due to anthropogenic activities.It is an urgent need to explore an effective way for mangrove restoration.Here,three rows of bamboo fences with hydro-sedimentary observation set over Aegiceras corniculatum mangrove tidal flat of the Nanliu Delta,the largest delta of Beibu Gulf,China,were conducted to analyze the hydro-sedimentary variations induced by bamboo fences.Results identified that the mean horizontal velocity Um per burst(20 min)decreased by as much as 71%and 40%in comparison with those without bamboo fences in March and November,respectively,when the tidal current entering the bamboo area during flood.The maximum of mean horizontal flow velocity Um-max at bamboo area was 50%–75%of that without bamboo fences during ebb tide.The suspended sediment concentration of bamboo area suggested a maximum reduction of 57%relative to bare flat during flood,and was 80%lower than bare flat at ebb peak.Moreover,the turbulent kinetic dissipationεat flood tide was significantly higher than that at ebb tide,while the bamboo fences greatly increased the turbulent kinetic dissipationεby 2 to 5 times relative to bare flat,resulting in an increase of the bed elevation by inhibiting the sediment incipient motion and intercepting suspended sediment.The siltation rate at the bamboo area was 140%and 29.3%higher than that at the bare flat and the region covered with A.corniculatum,respectively.These results highlight that bamboo fences can effectively attenuate tidal current and thus promote siltation over mangrove flat,which contribute great benefit to mangrove survival.展开更多
The hydrologic and hydraulic changings on the behavior of Mono river are the result of the stress involved by human activities, on one hand and the construction of the dam of Nangbéto and the exploitation of sand...The hydrologic and hydraulic changings on the behavior of Mono river are the result of the stress involved by human activities, on one hand and the construction of the dam of Nangbéto and the exploitation of sand in downstream of the dam by the population, between Athiémé and Agbanankin on other hand. That effect had also affected the shape of the sections of the river in the context of climate variability. It shows consequently that area is also a trapping area of sediments eroded in downstream of the dam and is responsible for the trapping of sediments in the river. The slope and the flow rate are the main factors of the real capacity of transport of a watercourse. They also determine the transport of solid flows from upstream to downstream. This drawing model established by taking into account the bathymetry of a transversal section of the Mono river at Athiémé, is the first step of a global investigation of the solid flow transport in the basin of Mono river and the boundary condition for the characterization of its hydro-sedimentary dynamics study. It aims to take into account sections and the used technique which consist to measure on one located section as the representative section of the river at Athiémé, by moving the boat used for bathymetry.展开更多
The problems of flooding, bank erosion and even the breaching of the barrier beach by the Grand-Popo lagoon are a concern in the south-western Beninese river-lagoon complex. The present study aims to improve the knowl...The problems of flooding, bank erosion and even the breaching of the barrier beach by the Grand-Popo lagoon are a concern in the south-western Beninese river-lagoon complex. The present study aims to improve the knowledge of the factors controlling the hydro-sedimentary functioning of this lagoon of Grand-Popo. It was based on bathymetric and sedimentological studies and the analysis of physical-chemical parameters of the water and allowed to know the morphology of the lagoon bottom and the distribution of sedimentary facies according to the intensity of the water current. The salinity of the lagoon waters shows a west-east gradient passing thus from 0‰ to 0.78‰ in the main direction of flow. Over the whole lagoon system, the average liquid flows vary from <span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span>38.499 to 159.13 m<sup>3</sup>/s. The bathymetry indicates depths varying from 0.4 to 6.5 m, revealing type V and type U lagoon bottoms which reflect acute bottom concavities marked by hollowing under the effect of strong currents or by sandy terraces resulting from the continuous input of sediments carried by the Mono River. These sediments are heterogeneously distributed in the lagoon bottom and vary from free sand to mud. Given the complexity of the factors that control the hydro-sedimentary functioning of the Grand-Popo lagoon, it is recommended that periodic hydrological and bathymetric monitoring be carried out to locate exceptional variations in water levels to prevent not only the risks of overflowing lagoon waters and the flooding that follows but also spectacular erosion of the lagoon banks.展开更多
文摘The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their characterization and the analysis of hydrosedimentary dynamics is the second step of the investigation of the solid flow transport in the Mono river. This study aims to quantify the volume of trapped sediments in function of the variation of the geometry of the shape of sections of the river depending of the slope and the flow rate therefore to evaluate the capacity of transport of eroded solid flows of a watercourse from upstream to downstream. Consequently, the decreasing percentage of deposited alluvium from upstream to downstream is calculated along Mono river. Thus the drawn granulometric curve of sediments and the determinate granulometric characteristics of sediments permit to quantify the carried sediment charges at each chosen section with Engelund-Hansen model in Mono river.
基金The National Natural Science Key Foundation of China under contract No.41930537the Key Research and Development Plan of Guangxi under contract No.AB21076016+1 种基金the Marine Science Program for Guangxi First-Class Discipline,Beibu Gulf Universitythe China Postdoctoral Science Foundation under contract No.2022M721150.
文摘Mangrove forest is one of the most important ecological and environmental resources by effectively promoting tidal flat deposition and preventing the coastal region from typhoon.However,there have been mass loss of mangrove forests due to anthropogenic activities.It is an urgent need to explore an effective way for mangrove restoration.Here,three rows of bamboo fences with hydro-sedimentary observation set over Aegiceras corniculatum mangrove tidal flat of the Nanliu Delta,the largest delta of Beibu Gulf,China,were conducted to analyze the hydro-sedimentary variations induced by bamboo fences.Results identified that the mean horizontal velocity Um per burst(20 min)decreased by as much as 71%and 40%in comparison with those without bamboo fences in March and November,respectively,when the tidal current entering the bamboo area during flood.The maximum of mean horizontal flow velocity Um-max at bamboo area was 50%–75%of that without bamboo fences during ebb tide.The suspended sediment concentration of bamboo area suggested a maximum reduction of 57%relative to bare flat during flood,and was 80%lower than bare flat at ebb peak.Moreover,the turbulent kinetic dissipationεat flood tide was significantly higher than that at ebb tide,while the bamboo fences greatly increased the turbulent kinetic dissipationεby 2 to 5 times relative to bare flat,resulting in an increase of the bed elevation by inhibiting the sediment incipient motion and intercepting suspended sediment.The siltation rate at the bamboo area was 140%and 29.3%higher than that at the bare flat and the region covered with A.corniculatum,respectively.These results highlight that bamboo fences can effectively attenuate tidal current and thus promote siltation over mangrove flat,which contribute great benefit to mangrove survival.
文摘The hydrologic and hydraulic changings on the behavior of Mono river are the result of the stress involved by human activities, on one hand and the construction of the dam of Nangbéto and the exploitation of sand in downstream of the dam by the population, between Athiémé and Agbanankin on other hand. That effect had also affected the shape of the sections of the river in the context of climate variability. It shows consequently that area is also a trapping area of sediments eroded in downstream of the dam and is responsible for the trapping of sediments in the river. The slope and the flow rate are the main factors of the real capacity of transport of a watercourse. They also determine the transport of solid flows from upstream to downstream. This drawing model established by taking into account the bathymetry of a transversal section of the Mono river at Athiémé, is the first step of a global investigation of the solid flow transport in the basin of Mono river and the boundary condition for the characterization of its hydro-sedimentary dynamics study. It aims to take into account sections and the used technique which consist to measure on one located section as the representative section of the river at Athiémé, by moving the boat used for bathymetry.
文摘The problems of flooding, bank erosion and even the breaching of the barrier beach by the Grand-Popo lagoon are a concern in the south-western Beninese river-lagoon complex. The present study aims to improve the knowledge of the factors controlling the hydro-sedimentary functioning of this lagoon of Grand-Popo. It was based on bathymetric and sedimentological studies and the analysis of physical-chemical parameters of the water and allowed to know the morphology of the lagoon bottom and the distribution of sedimentary facies according to the intensity of the water current. The salinity of the lagoon waters shows a west-east gradient passing thus from 0‰ to 0.78‰ in the main direction of flow. Over the whole lagoon system, the average liquid flows vary from <span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span>38.499 to 159.13 m<sup>3</sup>/s. The bathymetry indicates depths varying from 0.4 to 6.5 m, revealing type V and type U lagoon bottoms which reflect acute bottom concavities marked by hollowing under the effect of strong currents or by sandy terraces resulting from the continuous input of sediments carried by the Mono River. These sediments are heterogeneously distributed in the lagoon bottom and vary from free sand to mud. Given the complexity of the factors that control the hydro-sedimentary functioning of the Grand-Popo lagoon, it is recommended that periodic hydrological and bathymetric monitoring be carried out to locate exceptional variations in water levels to prevent not only the risks of overflowing lagoon waters and the flooding that follows but also spectacular erosion of the lagoon banks.