Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump(EDP) and brake actuators, which increases the weight of the aircraft and may even cause serious vibrat...Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump(EDP) and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft(MEA), this paper proposes a new integrated self-powered brake system(ISBS) for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA.展开更多
Where hydraulic characteristics of ship lock filling and emptying system are concerned, there are much bigger differences between prototype and model experiments. Based on the results of the prototype experiments fur ...Where hydraulic characteristics of ship lock filling and emptying system are concerned, there are much bigger differences between prototype and model experiments. Based on the results of the prototype experiments fur the Three Gorges Project (TGP), experiments on the feedback model were conducted of the ship-lock filling and emptying system, by means of technologies of drag reduction, under similar conditions as the operation of the prototype project. The experimental results show that the difference of drag co efficient reached-44% hetween the prototype and the model for the filling and emptying system of the ship-lock No. 3 for TGP and the difference of discharge coefficient was ahout 33% between them. The technologies of drag reduction are more efficient in the simulation of a ship lock filling and emptying system in order to he consistent for discharge, water level, time average pressure and pulsating pressure between prototypes and models.展开更多
For the primary mirror of a large-scale telescope, an electro-hydraulic position control system(EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a...For the primary mirror of a large-scale telescope, an electro-hydraulic position control system(EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.展开更多
基金supports from the Science and Technology on Aircraft Control Laboratory and Aviation Key Laboratory of Scienceco-supported by the National Natural Science Foundation of China(No.51475020)the National Key Basic Research Program of China(No.2014CB046401)
文摘Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump(EDP) and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft(MEA), this paper proposes a new integrated self-powered brake system(ISBS) for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA.
文摘Where hydraulic characteristics of ship lock filling and emptying system are concerned, there are much bigger differences between prototype and model experiments. Based on the results of the prototype experiments fur the Three Gorges Project (TGP), experiments on the feedback model were conducted of the ship-lock filling and emptying system, by means of technologies of drag reduction, under similar conditions as the operation of the prototype project. The experimental results show that the difference of drag co efficient reached-44% hetween the prototype and the model for the filling and emptying system of the ship-lock No. 3 for TGP and the difference of discharge coefficient was ahout 33% between them. The technologies of drag reduction are more efficient in the simulation of a ship lock filling and emptying system in order to he consistent for discharge, water level, time average pressure and pulsating pressure between prototypes and models.
基金supported by the National Basic Research Program(973)of China(No.2013CB035400)the National High-Tech R&D Program(863)of China(No.2012AA041803)the National Natural Science Foundation of China(No.51221004)
文摘For the primary mirror of a large-scale telescope, an electro-hydraulic position control system(EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.