The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental line...The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental lines and traditional hybrid rice Shanyou 63 developed from three parental lines. The results showed that, as compared to Shanyou 63, the net photosynthetic rate of Liangyoupeijiu and X07S/Zihui 100 was 9.1% and 11.9% higher, the transpiration rate was 37.4% and 31.4% lower, and their water use efficiency was 74.2% and 63.5% higher respectively. After strong light (2 000 μmol photons·m -2 ·s -1 ) treatment for 2 h, the photochemical quantum yield and the photochemical quenching increased by 37.0% and 18.0% respectively in Liangyoupeijiu, 28.3% and 46.2% in X07S/Zihui 100, but decreased a little in Shanyou 63. The non_photochemical quenching decreased in Liangyoupeijiu and X07S/Zihui 100 (about 50%) but increased greatly in Shanyou 63 (about 50%). Better photosynthetic functions, higher water use efficiency and stronger resistance to photoinhibition, may be the physiological basis for the super high_yield of the two hybrid rice under study.展开更多
Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.He...Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.展开更多
Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated c...Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential(16.1 mV)is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO_(4)(11.5 mg/cm^(2))as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4%after undergoing 180 cycles.展开更多
This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experimen...This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experiment was performed at the beamline ID16B of the European Synchrotron Radiation Facility(ESRF),Grenoble,France,in the frame of proposal CH-6644.The patent titled“Stabilized Positive Electrode Material to Enable High Energy and Power Density Lithium-Ion Batteries”(IPD3173)is pertinent to this manuscript.It was filed by Zahra Ahaliabadeh and Tanja Kallio,and the patent rights are held by Aalto University.展开更多
Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic ...Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.展开更多
Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption.However,the adsorption capacity is limited by the scarcity of adsorption groups and storage spac...Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption.However,the adsorption capacity is limited by the scarcity of adsorption groups and storage space.Herein,the activated carbon-hybridized and amine-modified nanofibers are prepared by integrating activated carbon(AC)and polyacrylonitrile(PAN)via electrospinning method and the subsequent amination,which could provide additional storage space and adsorption groups for ultrahigh adsorption capability.Thus,the obtained amine-rich porous PAN nanofibers(APAN/AC)readily realized the ultrahigh adsorption capacity for metal ions and dyes in wastewater.Specifically,the adsorption capacity of APAN/AC nanofibers were 284 mg·g^(-1) for Cr(VI)and 248 mg·g^(-1) for methyl orange,which were almost 2 and 4 times than that of amine-modified nanofibers(APAN)and carbon-hybridized nanofibers(PAN/AC),respectively.Moreover,the AC inhibited the chain mobility of polymer matrix and thereby endowing APAN/AC nanofibers with excellent recyclability.The adsorption capability retained 80%after nine adsorption-desorption cycles.The adsorption kinetics and corresponding mechanism were further explored.This strategy combines the advantages of polymer nanofibers and AC,opening a new avenue for developing next-generation absorbent materials.展开更多
The limitation of areal energy density of rechargeable aqueous hybrid batteries(RAHBs)has been a significant longstanding problem that impedes the application of RAHBs in miniaturized energy storage.Constructing thick...The limitation of areal energy density of rechargeable aqueous hybrid batteries(RAHBs)has been a significant longstanding problem that impedes the application of RAHBs in miniaturized energy storage.Constructing thick electrodes with optimized geometrical properties is a promising strategy for achieving high areal energy density,but the sluggish ion/electron transfer and poor mechanical stability,as well as the increased electrode thickness,itself present well-known problems.In this work,a 3D printing technique is introduced to construct an ultra-thick lithium iron phosphate(LFP)/carboxylated carbon nanotube(CNT)/carboxyl terminated cellulose nanofiber(CNF)composite electrode with uncompromised reaction kinetics for high areal energy density Li–Zn RAHBs.The uniformly dispersed CNTs and CNFs form continuous interconnected 3D networks that encapsulate LFP nanoparticles,guaranteeing fast electron transfer and efficient stress relief as the electrode thickness increases.Additionally,multistage ion diffusion channels generated from the hierarchical porous structure assure accelerated ion diffusion.As a result,LFP/Zn hybrid pouch cells assembled with 3D printed electrodes deliver a well-retained reversible gravimetric capacity of about 143.5 mAh g^(-1) at 0.5 C as the electrode thickness increases from 0.52 to 1.56 mm,and establish a record-high areal energy density of 5.25 mWh cm^(-2) with an impressive utilization of active material up to 30 mg cm^(-2) for an ultra-thick(2.08 mm)electrode,which outperforms almost all reported zinc-based hybrid-ion and single-ion batteries.This work opens up exciting prospects for developing high areal energy density energy storage devices using 3D printing.展开更多
Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O...Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O(2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1200101,2018YFA0702001)the National Natural Science Foundation of China(21972130,21521001,21425521).
基金The State Key Basic Research and Development Plan(G1998010100)The Innovative Foundation of Laboratory of Photosynthesis Basic Research,Insitute of Botany,The Chinese Academy of Sciences
文摘The photosynthetic functions and the sensitivity to photoinhibition were compared between two superhigh_yield hybrid rice (Oryza sativa L.) Liangyoupeijiu and X07S/Zihui 100, the newly developed from two parental lines and traditional hybrid rice Shanyou 63 developed from three parental lines. The results showed that, as compared to Shanyou 63, the net photosynthetic rate of Liangyoupeijiu and X07S/Zihui 100 was 9.1% and 11.9% higher, the transpiration rate was 37.4% and 31.4% lower, and their water use efficiency was 74.2% and 63.5% higher respectively. After strong light (2 000 μmol photons·m -2 ·s -1 ) treatment for 2 h, the photochemical quantum yield and the photochemical quenching increased by 37.0% and 18.0% respectively in Liangyoupeijiu, 28.3% and 46.2% in X07S/Zihui 100, but decreased a little in Shanyou 63. The non_photochemical quenching decreased in Liangyoupeijiu and X07S/Zihui 100 (about 50%) but increased greatly in Shanyou 63 (about 50%). Better photosynthetic functions, higher water use efficiency and stronger resistance to photoinhibition, may be the physiological basis for the super high_yield of the two hybrid rice under study.
基金financially supported by the National Natural Science Foundation of China(51901249,U1904216)。
文摘Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.
基金financially supported by the National Natural Science Foundation of China(Nos.22279097,52172217)Natural Science Foundation of Guangdong Province(No.2021A1515010144)Shenzhen Science and Technology Program(No.JCYJ20210324120400002).
文摘Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential(16.1 mV)is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO_(4)(11.5 mg/cm^(2))as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4%after undergoing 180 cycles.
基金Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.
文摘This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experiment was performed at the beamline ID16B of the European Synchrotron Radiation Facility(ESRF),Grenoble,France,in the frame of proposal CH-6644.The patent titled“Stabilized Positive Electrode Material to Enable High Energy and Power Density Lithium-Ion Batteries”(IPD3173)is pertinent to this manuscript.It was filed by Zahra Ahaliabadeh and Tanja Kallio,and the patent rights are held by Aalto University.
基金supported in part by the National Key Research and Development Program of China(2022YFB3305300)the National Natural Science Foundation of China(62173178).
文摘Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.
基金This work is supported by Natural Science Foundation of Henan Province(Grant No.182300410276)the National Natural Science Foundation of China(Grant No.51904274)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(Grant No.19IRTSTHN028).
文摘Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption.However,the adsorption capacity is limited by the scarcity of adsorption groups and storage space.Herein,the activated carbon-hybridized and amine-modified nanofibers are prepared by integrating activated carbon(AC)and polyacrylonitrile(PAN)via electrospinning method and the subsequent amination,which could provide additional storage space and adsorption groups for ultrahigh adsorption capability.Thus,the obtained amine-rich porous PAN nanofibers(APAN/AC)readily realized the ultrahigh adsorption capacity for metal ions and dyes in wastewater.Specifically,the adsorption capacity of APAN/AC nanofibers were 284 mg·g^(-1) for Cr(VI)and 248 mg·g^(-1) for methyl orange,which were almost 2 and 4 times than that of amine-modified nanofibers(APAN)and carbon-hybridized nanofibers(PAN/AC),respectively.Moreover,the AC inhibited the chain mobility of polymer matrix and thereby endowing APAN/AC nanofibers with excellent recyclability.The adsorption capability retained 80%after nine adsorption-desorption cycles.The adsorption kinetics and corresponding mechanism were further explored.This strategy combines the advantages of polymer nanofibers and AC,opening a new avenue for developing next-generation absorbent materials.
基金supported by the National Natural Science Foundation of China(22005346,51673123,and 51933007)the National Key R&D Program of China(2017YFE0111500)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(2020SCUNG203)the State Key Laboratory of Polymer Materials Engineering(sklpme2020-1-02)the Fundamental Research Funds for the Central Universities(YJ202118)。
文摘The limitation of areal energy density of rechargeable aqueous hybrid batteries(RAHBs)has been a significant longstanding problem that impedes the application of RAHBs in miniaturized energy storage.Constructing thick electrodes with optimized geometrical properties is a promising strategy for achieving high areal energy density,but the sluggish ion/electron transfer and poor mechanical stability,as well as the increased electrode thickness,itself present well-known problems.In this work,a 3D printing technique is introduced to construct an ultra-thick lithium iron phosphate(LFP)/carboxylated carbon nanotube(CNT)/carboxyl terminated cellulose nanofiber(CNF)composite electrode with uncompromised reaction kinetics for high areal energy density Li–Zn RAHBs.The uniformly dispersed CNTs and CNFs form continuous interconnected 3D networks that encapsulate LFP nanoparticles,guaranteeing fast electron transfer and efficient stress relief as the electrode thickness increases.Additionally,multistage ion diffusion channels generated from the hierarchical porous structure assure accelerated ion diffusion.As a result,LFP/Zn hybrid pouch cells assembled with 3D printed electrodes deliver a well-retained reversible gravimetric capacity of about 143.5 mAh g^(-1) at 0.5 C as the electrode thickness increases from 0.52 to 1.56 mm,and establish a record-high areal energy density of 5.25 mWh cm^(-2) with an impressive utilization of active material up to 30 mg cm^(-2) for an ultra-thick(2.08 mm)electrode,which outperforms almost all reported zinc-based hybrid-ion and single-ion batteries.This work opens up exciting prospects for developing high areal energy density energy storage devices using 3D printing.
基金Funded by the Natural Science Foundation of Hubei Province(No.2003ABA085)
文摘Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O(2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior.