In this paper,the unsteady magnetohydrodynamic(MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated.This problem has relevant applications in optimizing thermal ...In this paper,the unsteady magnetohydrodynamic(MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated.This problem has relevant applications in optimizing thermal management systems in electronic devices,solar energy collectors,and other industrial applications where efficient heat transfer is very important.The study is based on the application of a numerical approach using the Finite Difference Method(FDM)for the resolution of the governing equations,which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media.It was found that the increase of Hartmann number(Ha)causes a reduction of the average Nusselt number(Nu),with a maximum decrease of 25%observed as Ha increases from 0 to 50.In addition,the influence of the wall’s wave amplitude and the heat source length on the heat transfer rate was quantified,and it was revealed that at high wave amplitude,the average Nu increases by up to 15%.These findings suggest that manipulating magnetic field strength and cavity geometry can significantly enhance thermal performance.The novelty of this is related to the exploration of a U-shaped wavy cavity,which is not covered in previous studies,and to the detailed examination of the combined effects of magnetic fields,radiation,and hybrid nanofluids.展开更多
The fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle v...The fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions is derived and compared with the existing one.The generalized model describing hybrid nanofluid suspended with multiple kinds of solid particles is suggested.The argument that the corresponding nanofluid solutions obtained by the homogenous model can be recovered from the results of the regular problems through simple arithmetic operations is checked.Solutions in similarity form for this flow problem are formulated by means of a set of similarity variables.The effects of various parameters on important physical quantities are analyzed and discussed.展开更多
The significance of the thermophysical properties of Tetra hybrid nanofluid in enhancing heat transmission in various applications like heat exchangers, automobiles, and solar storage cannot be overstated. These featu...The significance of the thermophysical properties of Tetra hybrid nanofluid in enhancing heat transmission in various applications like heat exchangers, automobiles, and solar storage cannot be overstated. These features can be tampered with when nanoparticles are been introduced into the base fluid to produce an improved heat carrier fluid for the system. This study investigates the impact of temperature-dependent properties on the movement of TiO2-SiO2-ZnO-Fe2O3/PAO Tetra hybrid nanofluid along a vertical porous surface with suction. The system of governing Partial Differential Equations (PDEs) was formulated and transformed into the system of coupled nonlinear third-order Ordinary Differential Equations (ODEs) by similarity techniques. The resulting ODEs were solved numerically using the shooting method and fourth order Runge-Kutta method with the aid of Maple 18.0 software. Using numerical and statistical methods, the study analyzes velocity, temperature profiles, skin friction coefficient, and Nusselt number. It was found that as the variable thermal conductivity parameter upsurges both the skin friction coefficient and Nusselt number intensify at the rate of 0.011697519 and 8.043581616 respectively. This study underscores the vital role of Tetra hybrid nanofluid’s thermophysical properties in improving heat transmission for diverse appli cations. By manipulating nanoparticles within the base fluid, the heat carrier fluid’s efficiency can be enhanced, critical for industries like automotive and enewable energy. These insights inform the design of more efficient heat exchange systems, advancing sustainability and performance in real-world scenarios.展开更多
Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have ...Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.展开更多
Unsteady turbulent magnetohydrodynamic nanofluid hydrothermal treatment is studied. The zero- equation turbulence model is used to simulate turbulent flow. The modeling results obtained by applying the hybrid differen...Unsteady turbulent magnetohydrodynamic nanofluid hydrothermal treatment is studied. The zero- equation turbulence model is used to simulate turbulent flow. The modeling results obtained by applying the hybrid differential transformation method-finite difference method to solve this problem confirm its viability. An analytical procedure is used for finding the effects of the problem parameters. Results indicate that the average Nusselt number over the lower plate depends linearly on volume fraction of nanofluid, Hall parameter, turbulent Eckert number, and Reynolds number whereas it is inversely proportional on the Hartmann number and the turbulent parameter.展开更多
基金funding this research work through the project number“NBU-FFR-2024-2505-08”.
文摘In this paper,the unsteady magnetohydrodynamic(MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated.This problem has relevant applications in optimizing thermal management systems in electronic devices,solar energy collectors,and other industrial applications where efficient heat transfer is very important.The study is based on the application of a numerical approach using the Finite Difference Method(FDM)for the resolution of the governing equations,which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media.It was found that the increase of Hartmann number(Ha)causes a reduction of the average Nusselt number(Nu),with a maximum decrease of 25%observed as Ha increases from 0 to 50.In addition,the influence of the wall’s wave amplitude and the heat source length on the heat transfer rate was quantified,and it was revealed that at high wave amplitude,the average Nu increases by up to 15%.These findings suggest that manipulating magnetic field strength and cavity geometry can significantly enhance thermal performance.The novelty of this is related to the exploration of a U-shaped wavy cavity,which is not covered in previous studies,and to the detailed examination of the combined effects of magnetic fields,radiation,and hybrid nanofluids.
基金Supported by the National Natural Science Foundation of China under Grant Nos.1187224,11432009the Australian Research Council through a Discovery Early Career Researcher Award DE150100169
文摘The fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions is derived and compared with the existing one.The generalized model describing hybrid nanofluid suspended with multiple kinds of solid particles is suggested.The argument that the corresponding nanofluid solutions obtained by the homogenous model can be recovered from the results of the regular problems through simple arithmetic operations is checked.Solutions in similarity form for this flow problem are formulated by means of a set of similarity variables.The effects of various parameters on important physical quantities are analyzed and discussed.
文摘The significance of the thermophysical properties of Tetra hybrid nanofluid in enhancing heat transmission in various applications like heat exchangers, automobiles, and solar storage cannot be overstated. These features can be tampered with when nanoparticles are been introduced into the base fluid to produce an improved heat carrier fluid for the system. This study investigates the impact of temperature-dependent properties on the movement of TiO2-SiO2-ZnO-Fe2O3/PAO Tetra hybrid nanofluid along a vertical porous surface with suction. The system of governing Partial Differential Equations (PDEs) was formulated and transformed into the system of coupled nonlinear third-order Ordinary Differential Equations (ODEs) by similarity techniques. The resulting ODEs were solved numerically using the shooting method and fourth order Runge-Kutta method with the aid of Maple 18.0 software. Using numerical and statistical methods, the study analyzes velocity, temperature profiles, skin friction coefficient, and Nusselt number. It was found that as the variable thermal conductivity parameter upsurges both the skin friction coefficient and Nusselt number intensify at the rate of 0.011697519 and 8.043581616 respectively. This study underscores the vital role of Tetra hybrid nanofluid’s thermophysical properties in improving heat transmission for diverse appli cations. By manipulating nanoparticles within the base fluid, the heat carrier fluid’s efficiency can be enhanced, critical for industries like automotive and enewable energy. These insights inform the design of more efficient heat exchange systems, advancing sustainability and performance in real-world scenarios.
文摘Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.
文摘Unsteady turbulent magnetohydrodynamic nanofluid hydrothermal treatment is studied. The zero- equation turbulence model is used to simulate turbulent flow. The modeling results obtained by applying the hybrid differential transformation method-finite difference method to solve this problem confirm its viability. An analytical procedure is used for finding the effects of the problem parameters. Results indicate that the average Nusselt number over the lower plate depends linearly on volume fraction of nanofluid, Hall parameter, turbulent Eckert number, and Reynolds number whereas it is inversely proportional on the Hartmann number and the turbulent parameter.