The kinematic accuracy is a key factor in the design of parallel or hybrid machine tools. This analysis improved the accuracy of a 4-DOF (degree of freedom) gantry hybrid machine tool based on a 3-DOF planar parallel...The kinematic accuracy is a key factor in the design of parallel or hybrid machine tools. This analysis improved the accuracy of a 4-DOF (degree of freedom) gantry hybrid machine tool based on a 3-DOF planar parallel manipulator by compensating for various positioning errors. The machine tool architecture was described with the inverse kinematic solution. The control parameter error model was used to analyze the accuracy of the 3-DOF planar parallel manipulator and to develop a kinematic calibration method. The experimental results prove that the calibration method reduces the cutter nose errors from ±0.50 mm to ±0.03 mm for a horizontal movement of 600 mm by compensating for errors in the slider home position, the guide way distance and the extensible strut home position. The calibration method will be useful for similar types of parallel kinematic machines.展开更多
基金the National High- Tech Research andDevelopm ent Program of China (No.2 0 0 2 AA4 2 1180 )and the Knowledge Innovation Program of ChineseAcademy of Sciences (No.KJCX1- X- 0 1)
文摘The kinematic accuracy is a key factor in the design of parallel or hybrid machine tools. This analysis improved the accuracy of a 4-DOF (degree of freedom) gantry hybrid machine tool based on a 3-DOF planar parallel manipulator by compensating for various positioning errors. The machine tool architecture was described with the inverse kinematic solution. The control parameter error model was used to analyze the accuracy of the 3-DOF planar parallel manipulator and to develop a kinematic calibration method. The experimental results prove that the calibration method reduces the cutter nose errors from ±0.50 mm to ±0.03 mm for a horizontal movement of 600 mm by compensating for errors in the slider home position, the guide way distance and the extensible strut home position. The calibration method will be useful for similar types of parallel kinematic machines.