期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于可穿戴传感器的人体活动识别研究综述 被引量:22
1
作者 郑增威 杜俊杰 +1 位作者 霍梅梅 吴剑钟 《计算机应用》 CSCD 北大核心 2018年第5期1223-1229,1238,共8页
人体活动识别(HAR)在医疗、安全、娱乐等方面有着广泛的应用。随着传感器器件的发展,各类能准确采集人体行为活动数据的传感器在手环、手表、手机等可穿戴设备上得到了广泛使用,相比基于视频图像的行为识别方法,基于传感器的行为识别具... 人体活动识别(HAR)在医疗、安全、娱乐等方面有着广泛的应用。随着传感器器件的发展,各类能准确采集人体行为活动数据的传感器在手环、手表、手机等可穿戴设备上得到了广泛使用,相比基于视频图像的行为识别方法,基于传感器的行为识别具有成本低、灵活、可移植性好的特点,因此,基于可穿戴传感器的人体活动识别研究成为行为识别中的研究热点。介绍了人体活动识别研究中原始数据采集、特征提取、特征选择以及分类方法,对识别流程中每一部分常用的技术以及研究现状进行了综述总结,最后分析人体活动识别研究当前存在的主要问题并展望了今后可能的研究方向。 展开更多
关键词 人体活动识别 可穿戴传感器 特征工程 数据处理 机器学习
下载PDF
基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术 被引量:14
2
作者 何坚 郭泽龙 +1 位作者 刘乐园 苏予涵 《电子与信息学报》 EI CSCD 北大核心 2022年第1期168-177,共10页
由于缺少统一人体活动模型和相关规范,造成已有可穿戴人体活动识别技术采用的传感器类别、数量及部署位置不尽相同,并影响其推广应用。该文在分析人体活动骨架特征基础上结合人体活动力学特征,建立基于笛卡尔坐标的人体活动模型,并规范... 由于缺少统一人体活动模型和相关规范,造成已有可穿戴人体活动识别技术采用的传感器类别、数量及部署位置不尽相同,并影响其推广应用。该文在分析人体活动骨架特征基础上结合人体活动力学特征,建立基于笛卡尔坐标的人体活动模型,并规范了模型中活动传感器部署位置及活动数据的归一化方法;其次,引入滑动窗口技术建立将人体活动数据转换为RGB位图的映射方法,并设计了人体活动识别卷积神经网络(HAR-CNN);最后,依据公开人体活动数据集Opportunity创建HAR-CNN实例并进行了实验测试。实验结果表明,HAR-CNN对周期性重复活动和离散性人体活动识别的F1值分别达到了90%和92%,同时算法具有良好的运行效率。 展开更多
关键词 人体活动识别 特征提取 卷积神经网络 滑动窗口 RGB位图
下载PDF
基于卷积神经网络-双向长短期记忆网络的人体活动识别方法 被引量:9
3
作者 孙彦玺 陈继斌 武东辉 《科学技术与工程》 北大核心 2022年第4期1517-1525,共9页
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,... 针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。 展开更多
关键词 人体活动识别(har) 卷积神经网络(CNN) 双向长短时记忆网络(BiLSTM) 深度学习 可穿戴传感器
下载PDF
基于GRU-DRSN的双通道人体活动识别
4
作者 邵小强 原泽文 +3 位作者 杨永德 刘士博 李鑫 韩泽辉 《科学技术与工程》 北大核心 2024年第2期676-683,共8页
人体活动识别(human activity recognizition, HAR)在医疗、军工、智能家居等领域有很大的应用空间。传统机器学习方法特征提取难度较大且精度不高。针对上述问题并结合传感器时序特性,提出了一种融合CBAM(convolutional block attentio... 人体活动识别(human activity recognizition, HAR)在医疗、军工、智能家居等领域有很大的应用空间。传统机器学习方法特征提取难度较大且精度不高。针对上述问题并结合传感器时序特性,提出了一种融合CBAM(convolutional block attention module)注意力机制的GRU-DRSN双通道并行模型,有效避免了传统串行模型因网络深度加深引起梯度爆炸和消失问题。同时并行结构使得两条支路具有相同的优先级,使用深度残差收缩网络(deep residual shrinkage network, DRSN)提取数据的深层空间特征,同时使用门控循环结构(gated recurrent unit, GRU)学习活动样本在时间序列上的特征,同时进行提取样本不同维度的特征,并通过CBAM模块进行特征的权重分配,最后通过Softmax层进行识别,实现了端对端的人体活动识别。使用公开数据集(wireless sensor data mining, WISDM)进行验证,模型平均精度达到了97.6%,与传统机器学习模型和前人所提神经网络模型相比,有更好的识别效果。 展开更多
关键词 人体活动识别(human activity recognizition har) 门控循环结构(gated recurrent unit GRU) 深度残差收缩网络(deep residual shrinkage network DRSN) CBAM 双通道并行
下载PDF
用于位置信息辅助复杂人体行为识别的新型深度学习框架
5
作者 于静伟 张磊 +1 位作者 高震宇 倪琴 《Journal of Donghua University(English Edition)》 CAS 2024年第3期231-240,共10页
随着近年来智能生活理念的普及和可穿戴终端技术的快速发展,基于传感器数据的人体行为识别(human activity recognition,HAR)已引起广泛关注,并且具有重要的学术研究和商业应用价值。该文研究了增强HAR模型对用户日常简单行为(simple ac... 随着近年来智能生活理念的普及和可穿戴终端技术的快速发展,基于传感器数据的人体行为识别(human activity recognition,HAR)已引起广泛关注,并且具有重要的学术研究和商业应用价值。该文研究了增强HAR模型对用户日常简单行为(simple activity,SA)和复杂行为(complex activity,CA)的识别,并提出了一个深度学习(deep learning,DL)模型。首先,使用两个可公开获取的数据集UCI HAR和Shoaib CHA,并对其进行标准化处理。其次,使用所提出的模型提取各种动作的特征,进行人体行为识别。鉴于用户行为和位置之间的高度关联,通过独热编码技术将位置信息集成到数据集中,以提高模型的分类性能。此外,将所提出的模型与8种经典机器学习(machine learning,ML)算法和6种DL算法进行了对比。最后,评估了不同行为类型对HAR模型识别性能的影响。实验结果表明,所提出的模型在UCI HAR和Shoaib CHA数据集上的最高分类准确率分别达到了96.77%和99.13%。通过向数据集添加位置信息,HAR模型对SA和CA的分类准确率得到了显著提高。 展开更多
关键词 人体行为识别(har) 机器学习(ML) 深度学习(DL) 可穿戴传感器 卷积神经网络 长短期记忆(LSTM)神经网络
下载PDF
基于IMU传感器与深度度量学习的人体行为识别算法
6
作者 时尚 何正燃 董恒 《移动通信》 2024年第3期131-136,共6页
人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围... 人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围绕基于智能手机内置IMU传感器的HAR方法,提出了一种名为RMDML的HAR方法,该方法结合了轻量化神经网络Res-MLP和深度度量学习的特征嵌入技术,旨在提取具有可分离性与可判别性的泛化特征,从而提高模型识别性能和泛化性能。RMDML模型在公开数据集UCI HAR上取得了97.26%的准确率,高于几种常见的HAR算法,证明了所提出方法的有效性。 展开更多
关键词 人体行为识别 惯性测量单元传感器 残差多层感知机 度量学习
下载PDF
基于深度神经网络的人体运动识别系统设计
7
作者 张德帝 刘宁 +3 位作者 苏中 戚文昊 宋一平 乔利康 《传感器与微系统》 CSCD 北大核心 2023年第5期69-72,77,共5页
针对狭小空间下灾难救援人员运动状态感知困难的问题,提出一种基于卷积神经网络(CNN)+长短期记忆网络(LSTM)的人体运动识别(HAR)方法,设计了一种可运行于嵌入式微控制器单元(MCU)的HAR系统。系统使用佩戴于胸口的三轴加速度计及陀螺仪... 针对狭小空间下灾难救援人员运动状态感知困难的问题,提出一种基于卷积神经网络(CNN)+长短期记忆网络(LSTM)的人体运动识别(HAR)方法,设计了一种可运行于嵌入式微控制器单元(MCU)的HAR系统。系统使用佩戴于胸口的三轴加速度计及陀螺仪传感器作为数据输入,研究了卷积核数量和LSTM细胞数量对网络的影响,构建了HAR的深度学习模型。同时,针对存储占用、计算负荷和功耗对网络进行了优化与转译,并在嵌入式设备验证。结果表明:该系统可稳定运行于微控制器单元且对人体运动状态具有良好的识别精度。 展开更多
关键词 深度神经网络 人体运动识别 灾难救援 嵌入式设备
下载PDF
融合多尺度卷积和BiGRU网络的人类活动识别模型
8
作者 魏雄 王子樊 《计算机应用》 CSCD 北大核心 2023年第S02期72-76,共5页
基于深度学习的人类活动识别(HAR)方法在处理时间序列数据时存在手工特征提取过程复杂、复杂时序依赖性难以挖掘问题,如何有效自动提取人类活动的多尺度特征并挖掘时序前后的关联性特征,是提高HAR准确率的关键因素。为解决上述问题,提... 基于深度学习的人类活动识别(HAR)方法在处理时间序列数据时存在手工特征提取过程复杂、复杂时序依赖性难以挖掘问题,如何有效自动提取人类活动的多尺度特征并挖掘时序前后的关联性特征,是提高HAR准确率的关键因素。为解决上述问题,提出一种多尺度一维卷积-双向门控循环单元(1DMCNN-BiGRU)模型。使用多尺度卷积提取精细化感知信号特征,同时融合双向门控循环单元(BiGRU)提取的前后整体信号的相关性特征,从而提高模型的识别准确率。在真实场景数据集USC-HAD、WISDM、PAMAP2上的实验结果表明,相较于次优的CNN-LSTM(Convolutional Neural Network with Long Short-Term Memory)模型,所提模型的识别准确率分别提高了1.06%、1.23%和1.71%,具有较高的识别准确度,验证了所提模型用于HAR的有效性。 展开更多
关键词 特征提取 卷积神经网络 双向门控循环单元 人类活动识别 深度学习
下载PDF
基于启发式集成特征选择的人体活动识别 被引量:3
9
作者 戴健威 李瑞祥 +2 位作者 陈金瑶 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2022年第4期860-871,共12页
针对人为提取的冗余特征集和无关特征集导致可穿戴传感器的人体活动识别分类性能降低的问题,提出一种基于启发式集成特征选择的人体活动识别方法。该方法首先选取了包含功率谱密度(Power spectrum density,PSD)的特征集用于识别易混淆... 针对人为提取的冗余特征集和无关特征集导致可穿戴传感器的人体活动识别分类性能降低的问题,提出一种基于启发式集成特征选择的人体活动识别方法。该方法首先选取了包含功率谱密度(Power spectrum density,PSD)的特征集用于识别易混淆的活动,在此基础上借助皮尔逊系数法(Pearson correlation coefficient,PCC)筛选出低相关的特征子集,然后使用改进的正余弦优化算法(Sine cosine algorithm,SCA)进行特征优化,通过两次特征筛选得到最优特征子集。实验结果表明,在实验室采集的数据集中使用该方法后的特征子集维数为34,识别准确率达到了98.21%。在公开的SCUT-NAA数据集中进行对比实验,特征子集维数为39,低于以往基于该数据集研究方法的特征维数,并且识别准确率达到了96.51%。 展开更多
关键词 人体活动识别 特征选择 正余弦算法 功率谱密度 可穿戴传感器
下载PDF
面向智能感知活动识别的混合神经网络模型 被引量:4
10
作者 陆保国 蒋炜 马浩杰 《指挥信息系统与技术》 2019年第3期41-45,共5页
人类活动识别(HAR)任务传统上使用人工提取的特征和一些浅层机器学习模型,但该方法限制较多。利用深度神经网络自动提取特征的能力,结合最近取得巨大成功的递归神经网络和卷积神经网络,提出了一种新颖的混合神经网络(HybridSense)模型,... 人类活动识别(HAR)任务传统上使用人工提取的特征和一些浅层机器学习模型,但该方法限制较多。利用深度神经网络自动提取特征的能力,结合最近取得巨大成功的递归神经网络和卷积神经网络,提出了一种新颖的混合神经网络(HybridSense)模型,并在真实数据集上对模型进行了性能评估。试验结果表明,该模型在动作识别任务方面性能得到了显著提升。 展开更多
关键词 人类活动识别 人工智能 神经网络 多模态
下载PDF
铁路工人人体行为识别模型 被引量:2
11
作者 黄珍珍 肖硕 +3 位作者 王钰 陈伟 王升志 江海峰 《中国安全科学学报》 CAS CSCD 北大核心 2022年第6期17-22,共6页
为提高铁路工人施工安全系数,采用基于人体行为识别(HAR)的智能化监测方法,估计铁路工人在施工过程中的动作;使用端到端自动提取数据特征的深度学习方法搭建网络,提高行为识别精度和模型泛化性;鉴于循环神经网络并行能力差,收敛时间长,... 为提高铁路工人施工安全系数,采用基于人体行为识别(HAR)的智能化监测方法,估计铁路工人在施工过程中的动作;使用端到端自动提取数据特征的深度学习方法搭建网络,提高行为识别精度和模型泛化性;鉴于循环神经网络并行能力差,收敛时间长,提出结合空洞卷积与自注意力机制的深度学习模型;使用WISDM和MobiAct公开数据集,分别识别2个数据集上的基本动作和跌倒、撞击等行为。结果表明:相比于卷积神经网络(CNN)、长短期记忆(LSTM)网络、深度卷积LSTM网络,该模型具有更好的识别精度和性能,能够实现更准确的工人行为划分。 展开更多
关键词 铁路工人 人体行为识别(har) 深度学习 空洞卷积 自注意力机制
下载PDF
基于特征融合的人体运动识别 被引量:3
12
作者 连西静 崔升 《医用生物力学》 EI CAS CSCD 北大核心 2019年第6期644-649,667,共7页
目的 基于手机内置传感器所获得人体运动信号,建立人体运动识别模型,为身体状况评估、特殊人群监护以及其他生物医学研究提供支持。方法 使用手机内置传感器采集运动信号,并结合公共数据集UCI HAR和WISDM作为实验数据。采用卷积神经网... 目的 基于手机内置传感器所获得人体运动信号,建立人体运动识别模型,为身体状况评估、特殊人群监护以及其他生物医学研究提供支持。方法 使用手机内置传感器采集运动信号,并结合公共数据集UCI HAR和WISDM作为实验数据。采用卷积神经网络与自回归模型相结合的特征提取方式,建立人体运动识别模型。结果 模型在自采集数据、UCI HAR和WISDM中均取得90%以上的识别正确率。结论 引入自回归模型,可以避免手工设计特征值的缺陷,并有效减少大规模堆积卷积层的计算量。研究结果证明,基于特征融合的方法可以有效识别人体运动。 展开更多
关键词 人体运动识别 时间序列分类 卷积神经网络 自回归模型
下载PDF
基于渐进式神经网络架构搜索的人体运动识别 被引量:1
13
作者 王震宇 张雷 +1 位作者 高文彬 权威铭 《计算机应用》 CSCD 北大核心 2022年第7期2058-2064,共7页
为了解决基于传感器数据的运动识别问题,利用深度卷积神经网络(CNN)在公开的OPPORTUNITY传感器数据集上进行运动识别,提出了一种改进的渐进式神经网络架构搜索(PNAS)算法。首先,神经网络模型设计过程中不再依赖于合适拓扑结构的手动选择... 为了解决基于传感器数据的运动识别问题,利用深度卷积神经网络(CNN)在公开的OPPORTUNITY传感器数据集上进行运动识别,提出了一种改进的渐进式神经网络架构搜索(PNAS)算法。首先,神经网络模型设计过程中不再依赖于合适拓扑结构的手动选择,而是通过PNAS算法来设计最优拓扑结构以最大化F1分数;其次,使用基于序列模型的优化(SMBO)策略,在该策略中将按照复杂度从低到高的顺序搜索结构空间,同时学习一个代理函数以引导对结构空间的搜索;最后,将搜索过程中表现最好的20个模型在OPPORTUNIT数据集上进行完全训练,并从中选出表现最好的模型作为搜索到的最优架构。通过这种方式搜索到的最优架构在OPPORTUNITY数据集上的F1分数达到了93.08%,与进化算法搜索到的最优架构及DeepConvLSTM相比分别提升了1.34%和1.73%,证明该方法能够改进以前手工设计的模型结构,且是可行有效的。 展开更多
关键词 人体运动识别 深度学习 神经网络架构搜索 卷积神经网络 基于序列模型的优化
下载PDF
基于FPGA的人体行为识别系统的设计
14
作者 吴宇航 何军 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第3期331-340,共10页
为实现边缘端人体行为识别需满足低功耗、低延时的目标,本文设计了一种以卷积神经网络(CNN)为基础、基于可穿戴传感器的快速识别系统.首先通过传感器采集数据,制作人体行为识别数据集,在PC端预训练基于CNN的行为识别模型,在测试集达到93... 为实现边缘端人体行为识别需满足低功耗、低延时的目标,本文设计了一种以卷积神经网络(CNN)为基础、基于可穿戴传感器的快速识别系统.首先通过传感器采集数据,制作人体行为识别数据集,在PC端预训练基于CNN的行为识别模型,在测试集达到93.61%的准确率.然后,通过数据定点化、卷积核复用、并行处理数据和流水线等方法实现硬件加速.最后在FPGA上部署识别模型,并将采集到的传感器数据输入到系统中,实现边缘端的人体行为识别.整个系统基于Ultra96-V2进行软硬件联合开发,实验结果表明,输入时钟为200 M的情况下,系统在FPGA上运行准确率达到91.80%的同时,识别速度高于CPU,功耗仅为CPU的1/10,能耗比相对于GPU提升了91%,达到了低功耗、低延时的设计要求. 展开更多
关键词 人体行为识别(har) 边缘端 可穿戴传感器 卷积神经网络(CNN) 现场可编程门阵列(FPGA) 硬件加速
下载PDF
基于多任务BiLSTM的配送人员活动识别
15
作者 徐盈 蓝雯飞 田鹏 《现代计算机》 2022年第21期26-32,共7页
当前物流业中,对于配送人员的薪酬计算大都基于配送距离和物品重量等因素,其缺乏对配送人员具体活动类型及能量消耗的考虑,难以对薪酬进行高效合理分配。基于此,在数据层面,通过与某大型物流公司合作,为25名配送人员穿戴相应设备,采集... 当前物流业中,对于配送人员的薪酬计算大都基于配送距离和物品重量等因素,其缺乏对配送人员具体活动类型及能量消耗的考虑,难以对薪酬进行高效合理分配。基于此,在数据层面,通过与某大型物流公司合作,为25名配送人员穿戴相应设备,采集其在配送过程中的加速度计和陀螺仪等真实数据。算法层面,提出了一种基于多任务双向长短时记忆(BiLSTM)的深度网络结构,通过大量实验表明,BiL⁃STM模型在活动识别和能量消耗分级上的分类准确率分别达到92.8%和94.2%,结果皆优于基准多任务LSTM算法和其他代表性学习算法。 展开更多
关键词 人类活动识别 能量消耗 可穿戴设备 多任务 双向长短期记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部