The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a G...The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.展开更多
基于S im onsen的假设,提出了船舶高能搁浅外部动力学的简化计算公式,并对船舶高能搁浅外部动力学过程进行了数值仿真研究。研究表明,在船舶高能搁浅动力学过程中,有相当部分的初动能转化为旋转形式的动能,包括纵摇、横摇和艏摇;不同于...基于S im onsen的假设,提出了船舶高能搁浅外部动力学的简化计算公式,并对船舶高能搁浅外部动力学过程进行了数值仿真研究。研究表明,在船舶高能搁浅动力学过程中,有相当部分的初动能转化为旋转形式的动能,包括纵摇、横摇和艏摇;不同于某些船舶碰撞问题,摩擦的影响不能忽略不计;对于船艏高能搁浅的情况,损伤路径会向船体外侧偏离,船舶与礁石之间的接触由剧烈的冲击逐渐过度到侧向挤压和滑动摩擦;相比于简化解析法,数值仿真法可以得到详细的动力学时历结果以及船体结构损伤变形图。展开更多
基金the support by the National Natural Science Foundation of China(Nos.51709247 and 51490675)the National Key R&D Program of China(No.2016YFE0200100)
文摘The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.
文摘基于S im onsen的假设,提出了船舶高能搁浅外部动力学的简化计算公式,并对船舶高能搁浅外部动力学过程进行了数值仿真研究。研究表明,在船舶高能搁浅动力学过程中,有相当部分的初动能转化为旋转形式的动能,包括纵摇、横摇和艏摇;不同于某些船舶碰撞问题,摩擦的影响不能忽略不计;对于船艏高能搁浅的情况,损伤路径会向船体外侧偏离,船舶与礁石之间的接触由剧烈的冲击逐渐过度到侧向挤压和滑动摩擦;相比于简化解析法,数值仿真法可以得到详细的动力学时历结果以及船体结构损伤变形图。