Vacuum hot roll bonding (VHRB) was used to bond pure titanium (Ti) plate to a 304 stainless steel (SS) plate with a niobium (Nb) interlayer, with the aim of producing a high-quality Ti-SS clad plate. The roll-...Vacuum hot roll bonding (VHRB) was used to bond pure titanium (Ti) plate to a 304 stainless steel (SS) plate with a niobium (Nb) interlayer, with the aim of producing a high-quality Ti-SS clad plate. The roll-bonding process was performed at different temperatures in the range of 850-1000℃, followed by characterization of microstructure and mechanical properties. The study demonstrates that the interfaces are free from cracks and discontinuities, and interdiffusion between the stainless steel and the titanium is effectively prevented by inserting a layer of pure Nb foil. No intermetallic reaction layer occurred at the Nb-Ti interface at any of the investigated temperatures. An intermetallic FeNb phase was formed at the Nb-SS interface when bonding was performed at 950 ℃ and above. The presence of the FeNb layer was confirmed by x-ray diffraction. The maximum shear strength of -396 MPa was obtained when bonding is carried out at 900 ℃. However, the formation of the FeNb layer at roll bonding temperature greater than 900 ℃ led to decrease in shear strength. Ductile fracture occurred through the Ti-Nb interface for roll-bonded temperatures of up to 900 ℃. On the other hand, at temperature of 950℃ and above, failure occurred through the Nb-SS interface, with brittle fracture characteristics.展开更多
Mechanisms taking place while hot rolling in vacuum of dissimilar materials joined in solid phase are described. It is shown that at joining of materials in solid phase redistribution of atoms from one material into a...Mechanisms taking place while hot rolling in vacuum of dissimilar materials joined in solid phase are described. It is shown that at joining of materials in solid phase redistribution of atoms from one material into another occurs on the interface of joining. On the base of calculation and experimental results it is concluded that the ultimate strength of the interface of joint is always higher than the ultimate strength of less durable material. Pair zirconium-stainless steel SS (Type AISI 321) and carbon steel (Type C22E) those are used in nuclear power are investigated.展开更多
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (...The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.展开更多
基金financially supported by the Fundamental Research Funds for Chinese Central Universities(No.N110607001)National High Technical Research and Development Programme of China(No.2013AA031302)
文摘Vacuum hot roll bonding (VHRB) was used to bond pure titanium (Ti) plate to a 304 stainless steel (SS) plate with a niobium (Nb) interlayer, with the aim of producing a high-quality Ti-SS clad plate. The roll-bonding process was performed at different temperatures in the range of 850-1000℃, followed by characterization of microstructure and mechanical properties. The study demonstrates that the interfaces are free from cracks and discontinuities, and interdiffusion between the stainless steel and the titanium is effectively prevented by inserting a layer of pure Nb foil. No intermetallic reaction layer occurred at the Nb-Ti interface at any of the investigated temperatures. An intermetallic FeNb phase was formed at the Nb-SS interface when bonding was performed at 950 ℃ and above. The presence of the FeNb layer was confirmed by x-ray diffraction. The maximum shear strength of -396 MPa was obtained when bonding is carried out at 900 ℃. However, the formation of the FeNb layer at roll bonding temperature greater than 900 ℃ led to decrease in shear strength. Ductile fracture occurred through the Ti-Nb interface for roll-bonded temperatures of up to 900 ℃. On the other hand, at temperature of 950℃ and above, failure occurred through the Nb-SS interface, with brittle fracture characteristics.
文摘Mechanisms taking place while hot rolling in vacuum of dissimilar materials joined in solid phase are described. It is shown that at joining of materials in solid phase redistribution of atoms from one material into another occurs on the interface of joining. On the base of calculation and experimental results it is concluded that the ultimate strength of the interface of joint is always higher than the ultimate strength of less durable material. Pair zirconium-stainless steel SS (Type AISI 321) and carbon steel (Type C22E) those are used in nuclear power are investigated.
基金Project(51312JQ08)supported by the Pre-Research Foundation of China General Equipment DepartmentProject(NBPJ2013-4)supported by the Postdoctoral Science Foundation of Ningbo Branch of China Academy of Ordnance Science+1 种基金Project(bsh1402073)supported by the Postdoctoral Science Foundation of Zhejiang Province,ChinaProject(2014A610051)supported by the Ningbo Natural Science Foundation of China
文摘The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.