期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants 被引量:49
1
作者 Yunde Zhao 《Molecular Plant》 SCIE CAS CSCD 2012年第2期334-338,共5页
Indole-3-acetic acid (IAA), the main naturally occurring auxin, is essential for almost every aspect of plant growth and development. However, only recently have studies finally established the first complete auxin ... Indole-3-acetic acid (IAA), the main naturally occurring auxin, is essential for almost every aspect of plant growth and development. However, only recently have studies finally established the first complete auxin biosynthesis pathway that converts tryptophan (Trp) to IAA in plants. Trp is first converted to indole-3-pyruvate (IPA) by the TAA family of amino transferases and subsequently IAA is produced from IPA by the YUC family of flavin monooxygenases. The two- step conversion of Trp to IAA is the main auxin biosynthesis pathway that plays an essential role in many developmental processes. 展开更多
关键词 hormonal regulation hormone biology GENETICS development auxin.
原文传递
Roles of Plant Hormones and Their Interplay in Rice Immunity 被引量:47
2
作者 Dong-Lei Yang Yinong Yang Zuhua He 《Molecular Plant》 SCIE CAS CSCD 2013年第3期675-685,共11页
ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were ... ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth. 展开更多
关键词 hormone biology defense responses plant-microbe interactions RICE
原文传递
植物激素的研究进展 被引量:23
3
作者 蔡传杰 陈善娜 《云南大学学报(自然科学版)》 CAS CSCD 2001年第S1期99-101,112,共4页
综述了 5大类植物激素和新型激素油菜素内酯用分子生物学 ,遗传学方法研究它们在生物合成 ,生理作用和作用机理上的进展 .
关键词 植物激素 突变体 信号传导 分子生物学
原文传递
A DTX/MATE-Type Transporter Facilitates Abscisic Acid Efflux and Modulates ABA Sensitivity and Drought Tolerance in Arabidopsis 被引量:26
4
作者 Haiwen Zhang Huifen Zhu +3 位作者 Yajun Pan Yuexuan Yu Sheng Luan Legong Li 《Molecular Plant》 SCIE CAS CSCD 2014年第10期1522-1532,共11页
Abscisic acid (ABA) regulates numerous physiological and developmental processes in plants. Recent studies identify intracellular ABA receptors, implicating the transport of ABA across cell membranes as crucial for ... Abscisic acid (ABA) regulates numerous physiological and developmental processes in plants. Recent studies identify intracellular ABA receptors, implicating the transport of ABA across cell membranes as crucial for ABA sensing and response. Here, we report that a DTX/Multidrug and Toxic Compound Extrusion (MATE) family member in Arabidopsis thaliana, AtDTX50, functions as an ABA efflux transporter. When expressed heterologously in both an Escherichia coli strain and Xenopus oocyte cells, AtDTX50 was found to facilitate ABA efflux. Furthermore, dtx50 mutant mesophyll cells preloaded with ABA released less ABA compared with the wild-type (WT). The AtDTX50 gene was expressed mainly in the vascular tissues and guard ceils and its expression was strongly up-regulated by exogenous ABA. The AtDTX50::GFP fusion protein was localized predominantly to the plasma membrane. The dtx50 mutant plants were observed to be more sensitive to ABA in growth inhibition. In addition, compared with the WT, dtx50 mutant plants were more tolerant to drought with lower stomatal conductance, consistent with its function as an ABA efflux carrier in guard cells. 展开更多
关键词 hormone biology molecular transport Arabidopsis.
原文传递
Abscisic Acid Signal off the STARTing Block 被引量:18
5
作者 Archana Joshi-Saha Christiane Valon Jeffrey Leung 《Molecular Plant》 SCIE CAS CSCD 2011年第4期562-580,共19页
The year 2009 marked a real turnaround in our understanding of the mode of abscisic acid (ABA) action. Nearly 25 years had elapsed since the first biochemical detection of ABA-binding proteins in the plasmalemma of ... The year 2009 marked a real turnaround in our understanding of the mode of abscisic acid (ABA) action. Nearly 25 years had elapsed since the first biochemical detection of ABA-binding proteins in the plasmalemma of Vicia guard cells was reported. This recent--and laudable--achievement is owed largely to the discovery of the soluble ABA receptors whose major interacting proteins happen to be some of the most well-established components of earliest steps in ABA signaling. These soluble receptors, with the double name of PYRABACTIN RESISTANCE (PYR) or REGULATORY COMPONENT OF ABA RECEPTOR (RCAR), are a family of Arabidopsis proteins of about 150-200 amino acids that share a conserved START domain. The ABA signal transduction circuitry under non-stress conditions is muted by the clade A protein phosphatases 2C (PP2C) (notably HAB1, ABI1, and ABI2). During the initial steps of ABA signaling, the binding of the hormone to the receptor induces a conformational change in the latter that allows it to sequester the PP2Cs. This excludes them from the negative regulation of the downstream ABA-activated kinases (OST1/SnRK2.6/SRK2E, SnRK2.2, and SnRK2.3), thus unleashing the pathway by freeing them to phosphorylate downstream targets that now include several b-ZIP transcription factors, ion channels (SLAC1, KAT1), and a NADPH oxidase (AtrbohF). The discovery of this family of soluble receptors and the rich insight already gained from structural studies of their complexes with different isoforms of ABA, PP2C, and the synthetic agonist pyrabactin lay the foundation towards rational design of chemical switches that can bolster drought hardiness in plants. 展开更多
关键词 Abiotic/environmental stress hormone biology signal transduction.
原文传递
植物激素的研究进展 被引量:13
6
作者 李玉珍 《河南科技学院学报》 2007年第4期50-53,共4页
综述了5大类植物激素和新型激素油菜素内酯,用分子生物学、遗传学方法研究它们在生物合成、生理作用和作用机理上的进展。
关键词 植物激素 突变体 信号传导 分子生物学
下载PDF
Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family 被引量:13
7
作者 Lee Chae Sylvia Sudat +2 位作者 Sandrine Dudoit Tong Zhu Sheng Luan 《Molecular Plant》 SCIE CAS CSCD 2009年第1期84-107,共24页
The genome ofArabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, pla... The genome ofArabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs are predicted to be major components of the signaling pathways that allow plants to respond to environmental and developmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the tran- scriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants, including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which the members of the RLK gene family may be involved, where such information has remained elusive for so many of its members. 展开更多
关键词 Abiotic/environmental stress hormone biology RECEPTORS transcriptome analysis disease responses Arabidopsis.
原文传递
Is ABP1 an Auxin Receptor Yet? 被引量:11
8
作者 Jing-Hua Shi Zhen-Biao Yang 《Molecular Plant》 SCIE CAS CSCD 2011年第4期635-640,共6页
AUXIN BINDING PROTEIN 1 (ABP1) has long been proposed as an auxin receptor to regulate cell expansion. The embryo lethality of ABP1-null mutants demonstrates its fundamental role in plant development, but also hinde... AUXIN BINDING PROTEIN 1 (ABP1) has long been proposed as an auxin receptor to regulate cell expansion. The embryo lethality of ABP1-null mutants demonstrates its fundamental role in plant development, but also hinders investigation of its involvement in post-embryonic processes and its mode of action. By taking advantage of weak alleles and inducible systems, several recent studies have revealed a role for ABP1 in organ development, cell polarization, and shape formation. In addition to its role in the regulation of auxin-induced gene expression, ABP1 has now been shown to modulate non-transcriptional auxin responses. ABP1 is required for activating two antagonizing ROP GTPase signaling pathways involved in cytoskeletal reorganization and cell shape formation, and participates in the regulation of clathrinmediated endocytosis to subsequently affect PIN protein distribution. These exciting discoveries provide indisputable evidence for the auxin-induced signaling pathways that are downstream of ABP1 function, and suggest intriguing mechanisms for ABPl-mediated polar cell expansion and spatial coordination in response to auxin. 展开更多
关键词 Hormonal regulation hormone biology RECEPTORS signal transduction cell signaling.
原文传递
Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice 被引量:10
9
作者 Rita Sharma David De Vleesschauwer +1 位作者 Manoj K. Sharma Pamela C. Ronald 《Molecular Plant》 SCIE CAS CSCD 2013年第2期250-260,共11页
Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive ove... Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid. 展开更多
关键词 ABIOTIC biotic CROSSTALK defense response hormone systems biology stress.
原文传递
A Novel ABA Insensitive Mutant of Lotus japonicus with a Wilty Phenotype Displays Unaltered Nodulation Regulation 被引量:4
10
作者 Bandana Biswas Pick Kuen Chan Peter M Gresshoff 《Molecular Plant》 SCIE CAS CSCD 2009年第3期487-499,共13页
An ABA insensitive mutant, Beyma, was isolated in Lotus japonicus MG-20 from an EMS mutagenesis population using root growth inhibition to applied ABA as the screening criterion. (The name "Beyma" was taken from th... An ABA insensitive mutant, Beyma, was isolated in Lotus japonicus MG-20 from an EMS mutagenesis population using root growth inhibition to applied ABA as the screening criterion. (The name "Beyma" was taken from the Australian Aboriginal language, Wagiman, beyma, meaning ‘drying up'.) The stable mutant that segregates as a dominant Mendelian mutation is insensitive to ABA induced inhibition of germination, vegetative growth, stomatal opening, as well as nodulation. Tissue ABA levels were normal, suggesting a sensitivity rather than biosynthesis mutation. It is slow-growing (50-70% of wild-type MG-20) and has a near-constitutive wilty phenotype associated with its inability to regulate stomatal opening. Whilst showing a wide range of ABA insensitive phenotypes, Beyma did not show alteration of nodule number control, as, in the absence of added ABA, the number and patterning (but not size) of nodules formed in the mutant were similar to that of MG-20. Split root experiments on MG-20 showed that application of ABA on one side of the root inhibited nodulation locally but not systemically. We propose that ABA is not involved directly in systemic autoregulation of nodulation (AON). 展开更多
关键词 hormone biology water relations GENETICS development SYMBIOSIS legume.
原文传递
Patterns and Timing in Expression of Early Auxin-Induced Genes Imply Involvement of Phospholipases A (pPLAs) in the Regulation of Auxin Responses 被引量:2
11
作者 Corinna Labusch Maria Shishova +3 位作者 Yunus Effendi Maoyin Li Xuemin Wang Gunther RE. Scherera 《Molecular Plant》 SCIE CAS CSCD 2013年第5期1473-1486,共14页
While it is known that patatin-related phospholipase A (pPLA) activity is rapidly activated within 3min by auxin, hardly anything is known about how this signal influences downstream responses like transcription of ... While it is known that patatin-related phospholipase A (pPLA) activity is rapidly activated within 3min by auxin, hardly anything is known about how this signal influences downstream responses like transcription of early auxin-induced genes or other physiological responses. We screened mutants with T-DNA insertions in members of the pPLA gene family for molecular and physiological phenotypes related to auxin. Only one in nine Arabidopsis thaliana ppla knockdown mutants displayed an obvious constitutive auxin-related phenotype. Compared to wild-type, ppla-IIlδ mutant seedlings had decreased main root lengths and increased lateral root numbers. We tested auxin-induced gene expression as a molecular readout for primary molecular auxin responses in nine ppla mutants and found delayed up- regulation of auxin-responsive gene exRression in all of themL Thirty minutes after auxin treatment, up-regulation of up to 40% of auxin-induced genes was delayed in mutant seedlings. We observed only a few cases with hypersensitive auxin-induced gene expression in ppla mutants. While, in three ppla mutants, which were investigated in detail, rapid up- regulation (as early as 10 min after auxin stimulus) of auxin-regulated genes was impaired, late transcriptional responses were wild-type-like. This regulatory or dynamic phenotype was consistently observed in different ppla mutants with delayed up-regulation that frequently affected the same genes. This defect was not affected by pPLA transcript levels which remained constant. This indicates aposttranslational mechanism as a functional link of pPLAs to auxin signaling. The need for a receptor triggering an auxin response without employing transcription regulation is discussed. 展开更多
关键词 hormonal regulation hormone biology signal transduction.
原文传递
Farnesylcysteine Lyase Regulation of Abscisic Arabidopsis is Involved in Negative Acid Signaling in
12
作者 David H. Huizinga Ryan Denton +4 位作者 Kelly G. Koehler Ashley Tomasello Lyndsay Wood Stephanie E. Sen Dring N. Crowell 《Molecular Plant》 SCIE CAS CSCD 2010年第1期143-155,共13页
The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC... The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC lyase activity exhibit an enhanced response to ABA. However, the enzymological properties of the FCLY-encoded enzyme and its precise role in ABA signaling remain unclear. Here, we show that recombinant Arabidopsis FC lyase expressed in insect cells exhib- its high selectivity for FC as a substrate and requires FAD and molecular oxygen for activity. Arabidopsis FC lyase is also shown to undergo post-translational N-glycosylation. FC, which is a competitive inhibitor of isoprenylcysteine methyltransferase (ICMT), accumulates in fcly mutants. Moreover, the enhanced response of fcly mutants to ABA is reversed by ICMToverexpression. These observations support the hypothesis that the ABA hypersensitive phenotype of fcly plants is the result of FC accumulation and inhibition of ICMT. 展开更多
关键词 hormone biology primary metabolism seed biology STOMATA membrane proteins Arabidopsis.
原文传递
Prediction and Validation of Promoters Involved in the Abscisic Acid Response in Physcomitrella patens 被引量:1
13
作者 Gerrit Timmerhaus Sebastian T. Hanke +1 位作者 Karl Buchta Stefan A. Rensing 《Molecular Plant》 SCIE CAS CSCD 2011年第4期713-729,共17页
Detection of cis-regulatory elements, such as transcription factor binding sites (TFBS), through utilization of ortholog conservation is possible only if genomic data from closely related organisms are available. An... Detection of cis-regulatory elements, such as transcription factor binding sites (TFBS), through utilization of ortholog conservation is possible only if genomic data from closely related organisms are available. An alternative approach is the detection of TFBS based on their overrepresentation in promoters of co-regulated genes. However, this approach usually suffers from a high rate of false-positive prediction. Here, we have conducted a case study using promoters of genes known to be strongly induced by the phytohormone abscisic acid (ABA) in the model plant Physcomitrella patens, a moss. Putative TFBS were detected using three de novo motif detection tools in a strict consensus approach. The resulting motifs were validated using data from microarray expression profiling and were able to predict ABA-induced genes with high specificity (90.48%) at mediocre sensitivity (33.33%). In addition, 27 genes predicted to contain ABA-responsive TFBS were validated using real-time PCR. Here, a total of 37% of the genes could be shown to be induced upon ABA treatment, while 70% were found to be regulated by ABA. We conclude that the consensus approach for motif detection using coregulation information can be used to identify genes that are regulated under a given stimulus. In terms of evolution, we find that the ABA response has apparently been conserved since the first land plants on the level of families involved in transcriptional regulation. 展开更多
关键词 hormone biology BIOINFORMATICS comparative genomics gene expression transcriptional control and tran-scription factors bryophytes.
原文传递
Long-Distance Signaling in bypass1 Mutants: Bioassay Development Reveals the bps Signal to Be a Metabolite 被引量:1
14
作者 Emma Adhikari Dong-Keun Lee +1 位作者 Patrick Giavalisco Leslie E. Sieburth 《Molecular Plant》 SCIE CAS CSCD 2013年第1期164-173,共10页
Root-to-shoot signaling is used by plants to coordinate shoot development with the conditions experienced by the roots. A mobile and biologically active compound, the bps signal, is over-produced in roots of an Arabid... Root-to-shoot signaling is used by plants to coordinate shoot development with the conditions experienced by the roots. A mobile and biologically active compound, the bps signal, is over-produced in roots of an Arabidopsis thaliana mutant called bypass1 (bpsl), and might also be a normally produced signaling molecule in wild-type plants. Our goal is to identify the bps signal chemically, which will then allow us to assess its production in normal plants. To identify any signaling molecule, a bioassay is required, and here we describe the development of a robust, simple, and quantitative bioassay for the bps signal. The developed bioassay follows the growth-reducing activity of the bps signal using the pCYCB1;I::GUS cell cycle marker. Wild-type plants carrying this marker, and provided the bps signal through either grafts or metabolite extracts, showed reduced cell division. By contrast, control grafts and treatment with control extracts showed no change in pCYCB1;I::GUS expression. To determine the chemical nature of the bps signal, extracts were treated with RNase A, Proteinase K, or heat. None of these treatments diminished the activity of bpsl extracts, sug- gesting that the active molecule might be a metabolite. This bioassay will be useful for future biochemical fractionation and analysis directed toward bps signal identification. 展开更多
关键词 hormone biology metabolic regulation physiology of plant growth secondary metabolism/natural prod-ucts signaling organismal level development.
原文传递
酿酒酵母中胆固醇生物合成与优化的研究进展 被引量:1
15
作者 李月 庞亚如 +2 位作者 成旭 李春 吕波 《微生物学通报》 CAS CSCD 北大核心 2022年第11期4869-4885,共17页
胆固醇是动物体内积累的主要甾醇化合物,在维持细胞膜功能、合成甾体激素、生产甾体药物中间体等方面具有重要的生物学意义和医学应用价值。传统动物组织提取胆固醇的方法费时费力并存在严重的环境污染问题,而甾醇分子结构的复杂程度也... 胆固醇是动物体内积累的主要甾醇化合物,在维持细胞膜功能、合成甾体激素、生产甾体药物中间体等方面具有重要的生物学意义和医学应用价值。传统动物组织提取胆固醇的方法费时费力并存在严重的环境污染问题,而甾醇分子结构的复杂程度也限制了其化学全合成。近些年,人们利用合成生物学方法构建的微生物细胞工厂已成功用于萜类、甾醇类等天然产物的开发与合成。文中综述了胆固醇微生物细胞工厂的研究进展,包括胆固醇生物合成途径的解析、底盘菌株的选择、异源基因元件的挖掘与优化、相关代谢通路的调控等方面,并讨论了当前研究面临的问题,以期为胆固醇的高效生物合成提供参考。 展开更多
关键词 胆固醇 类固醇激素 微生物细胞工厂 合成生物学 代谢通路调控
原文传递
子宫肌瘤的病因学研究进展 被引量:41
16
作者 王振骏 周洪贵 《医学综述》 2016年第16期3158-3161,共4页
子宫肌瘤是女性生殖系统最常见的良性肿瘤,其发病因素众多,具体机制尚不明确。种族、遗传等内在因素以及不良饮食及生活习惯、肥胖、盆腔炎等妇科疾病都有可能成为子宫肌瘤发生、发展的危险因素和诱因。同时,雌、孕激素及其受体的协同... 子宫肌瘤是女性生殖系统最常见的良性肿瘤,其发病因素众多,具体机制尚不明确。种族、遗传等内在因素以及不良饮食及生活习惯、肥胖、盆腔炎等妇科疾病都有可能成为子宫肌瘤发生、发展的危险因素和诱因。同时,雌、孕激素及其受体的协同作用促进了子宫肌瘤的发生、发展。此外,MED12基因突变、细胞外基质过度堆积、生长因子的作用以及染色体重排和DNA低甲基化等分子机制都参与了子宫肌瘤的发生与发展。 展开更多
关键词 子宫肌瘤 危险因素 性激素及其受体 分子生物学
下载PDF
鱼类生长激素的分子生物学和应用研究的进展 被引量:9
17
作者 徐斌 李德尚 张培军 《海洋与湖沼》 CAS CSCD 北大核心 1997年第5期553-557,共5页
依据1985-1995年国际有关资料对鱼类生长激素的分子生物学及其应用研究的最新成果与进展进行综合评述。研究表明,已完成鳗鲡等9种鱼类生长激素的氨基酸组成与全序列分析及大麻哈鱼等20种鱼类的生长激素基因的分离与克隆,有些已在工... 依据1985-1995年国际有关资料对鱼类生长激素的分子生物学及其应用研究的最新成果与进展进行综合评述。研究表明,已完成鳗鲡等9种鱼类生长激素的氨基酸组成与全序列分析及大麻哈鱼等20种鱼类的生长激素基因的分离与克隆,有些已在工程菌或动物细胞中高效表达;鱼类生长激素基因的调控机制与生长激素的活性部位研究正在深入进行;将外源的生长激素引入鱼体或将外源的生长激素基因导入受体鱼,以期促进生长、增加抗性,是生长激素应用于水产养殖研究的主要方向。 展开更多
关键词 鱼类 生长激素 分子生物学 基因
下载PDF
蛇胸腺的神经内分沁细胞 被引量:10
18
作者 李丕鹏 邓泽沛 王平 《解剖学报》 CAS CSCD 北大核心 1997年第4期429-432,I014,共5页
为了进一步了解蛇胸腺实质组织的内分泌特性,用16种激素和神经递质的抗血清对其进行了免疫组织化学观察。结果显示,蛇胸腺含有一些呈CCK、CRF、End、Gas、Glu、GRP、5-HT、Mot、Neu和SS免疫反应的细... 为了进一步了解蛇胸腺实质组织的内分泌特性,用16种激素和神经递质的抗血清对其进行了免疫组织化学观察。结果显示,蛇胸腺含有一些呈CCK、CRF、End、Gas、Glu、GRP、5-HT、Mot、Neu和SS免疫反应的细胞,其中以CCK、CRF、5-HT、Gas、Mot和SS反应较强,CCK、CRF、5-TH和Gas阳性细胞较多。这类细胞形态结构与胸腺上皮细胞明显不同,而与弥散神经内分泌细胞相似。这表明蛇胸腺实质中存在一类具有神经内分泌特性的细胞,应属于弥散神经内分泌系统。 展开更多
关键词 胸腺 神经内分泌细胞 免疫组织化学
全文增补中
性激素结合球蛋白的研究及应用前景 被引量:4
19
作者 陆一帆 佟启良 《北京体育大学学报》 CSSCI 1996年第1期25-28,共4页
性激素结合球蛋白(SHBG),是一种与机体雄激素代谢密切相关的物质,与体育运动也有着值得研究的关系。目前,国内外学者从生理学及分子生物学等角度对SHBG均有较广泛的研究。
关键词 球蛋白 睾丸酮 运动生物化学 SHBG
原文传递
生长激素相关肿瘤生物学效应的研究进展 被引量:2
20
作者 袁媛 李苏宜 《肠外与肠内营养》 CAS 北大核心 2010年第5期313-315,318,共4页
生长激素(GH)对人体的生长发育起着重要的调控作用。有实验数据显示GH/IGF-1轴可能促进肿瘤的发生发展。重组人生长激素(rhGH)究竟能否应用于恶性肿瘤病人?阻断GH-IGF轴对恶性肿瘤病人是否有积极的治疗作用?现就GH相关肿瘤生物学效应的... 生长激素(GH)对人体的生长发育起着重要的调控作用。有实验数据显示GH/IGF-1轴可能促进肿瘤的发生发展。重组人生长激素(rhGH)究竟能否应用于恶性肿瘤病人?阻断GH-IGF轴对恶性肿瘤病人是否有积极的治疗作用?现就GH相关肿瘤生物学效应的研究进展作一综述。 展开更多
关键词 生长激素 生长激素受体 胰岛素样生长因子 肿瘤生物学效应
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部