We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axi...We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles.Results of the analyses revealed significant along-trench variations in plate flexural bending:the trench relief(W0)of 1.9 to 5.1 km;trench-axis vertical loading(V0)of-0.5×10^12 to 2.2×10^12 N/m;axial bending moment(M0)of 0.1×10^17 to 2.2×10^17 N;effective elastic plate thickness seaward of the outer-rise region(Te^M)of 20 to 65 km,trench-ward of the outer-rise(Te^M)of 11 to 33 km,and the transition distance(Xr)of 20 to 95 km.The Horizon Deep,the second greatest trench depth in the world,has the greatest trench relief(W0 of 5.1km)and trench-axis loading(V0 of 2.2×10^12N/m);these values are only slightly smaller than that of the Challenger Deep(W0 of 5.7km and V0 of 2.9×10^12N/m)and similar to that of the Sirena Deep(W0 of 5.2 km and V0 of 2.0×10^12 N/m)of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates.Analyses using three independent methods,i.e.,the/inversion,the flexural curvature/yield strength envelope analysis,and the elasto-plastic bending model with normal faults,all yielded similar average Te reduction of 28%-36% and average Te reduction area S△Te of 1195-1402 km^2 near the trench axis.The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes.Comparisons of the Manila,Philippine,Tonga-Kermadec,Japan,and Mariana Trenches revealed that the average values Te^M of Te^M and both in general increase with the subducting plate age.展开更多
基金The National Natural Science Foundation of China under contract Nos 41976064,91958211,41890813,91858207,91628301,U1606401,41976066 and 41706056the Programs of the Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005 and 133244KYSB20180029+1 种基金the National Key Research and Development Program of China under contract Nos2018YFC0309800 and 2018YFC0310100the China Ocean Mineral Resources R&D Association under contract No.DY135-S2-1-04
文摘We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles.Results of the analyses revealed significant along-trench variations in plate flexural bending:the trench relief(W0)of 1.9 to 5.1 km;trench-axis vertical loading(V0)of-0.5×10^12 to 2.2×10^12 N/m;axial bending moment(M0)of 0.1×10^17 to 2.2×10^17 N;effective elastic plate thickness seaward of the outer-rise region(Te^M)of 20 to 65 km,trench-ward of the outer-rise(Te^M)of 11 to 33 km,and the transition distance(Xr)of 20 to 95 km.The Horizon Deep,the second greatest trench depth in the world,has the greatest trench relief(W0 of 5.1km)and trench-axis loading(V0 of 2.2×10^12N/m);these values are only slightly smaller than that of the Challenger Deep(W0 of 5.7km and V0 of 2.9×10^12N/m)and similar to that of the Sirena Deep(W0 of 5.2 km and V0 of 2.0×10^12 N/m)of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates.Analyses using three independent methods,i.e.,the/inversion,the flexural curvature/yield strength envelope analysis,and the elasto-plastic bending model with normal faults,all yielded similar average Te reduction of 28%-36% and average Te reduction area S△Te of 1195-1402 km^2 near the trench axis.The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes.Comparisons of the Manila,Philippine,Tonga-Kermadec,Japan,and Mariana Trenches revealed that the average values Te^M of Te^M and both in general increase with the subducting plate age.