With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted world...With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa).展开更多
The in-plane dynamic crushing behavior of re-entrant honeycomb is analyzed and compared with the conventional hexagon topology.Detailed deformation modes along two orthogonal directions are examined,where a parametric...The in-plane dynamic crushing behavior of re-entrant honeycomb is analyzed and compared with the conventional hexagon topology.Detailed deformation modes along two orthogonal directions are examined,where a parametric study of the effect of impact velocity and cell wall aspect ratio is performed.An analytical formula of the dynamic crushing strength is then deduced based on the periodic collapse mechanism of cell structures.Comparisons with the finite element results validate the effectiveness of the proposed analytical method.Numerical results also reveal higher plateau stress of re-entrant honeycomb over conventional hexagon topology,implying better energy absorption properties.The underlying physical understanding of the results is emphasized,where the auxetic effect(negative Poisson's ratio) induced in the re-entrant topology is believed to be responsible for this superior impact resistance.展开更多
基金supports from the National Natural Science Foundation of China(U21A2093 and 51903145)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)and Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa).
基金Project supported by the National Natural Science Foundation of China(Nos.11372252 and 11402035)
文摘The in-plane dynamic crushing behavior of re-entrant honeycomb is analyzed and compared with the conventional hexagon topology.Detailed deformation modes along two orthogonal directions are examined,where a parametric study of the effect of impact velocity and cell wall aspect ratio is performed.An analytical formula of the dynamic crushing strength is then deduced based on the periodic collapse mechanism of cell structures.Comparisons with the finite element results validate the effectiveness of the proposed analytical method.Numerical results also reveal higher plateau stress of re-entrant honeycomb over conventional hexagon topology,implying better energy absorption properties.The underlying physical understanding of the results is emphasized,where the auxetic effect(negative Poisson's ratio) induced in the re-entrant topology is believed to be responsible for this superior impact resistance.