分布式生物特征认证系统因不依赖弱口令或硬件标识物而获得高的可靠性、安全性和便利性,但也因生物特征存在永久失效和隐私泄露的风险而面临更多的安全威胁.基于同态加密技术的生物特征认证方案允许特征向量在密文域匹配以保护向量安全...分布式生物特征认证系统因不依赖弱口令或硬件标识物而获得高的可靠性、安全性和便利性,但也因生物特征存在永久失效和隐私泄露的风险而面临更多的安全威胁.基于同态加密技术的生物特征认证方案允许特征向量在密文域匹配以保护向量安全和用户隐私,但也因此要在密文域执行昂贵的乘法运算,而且还可能因为向量封装不当而遭受安全攻击.在Brakerski等人同态加密方案的基础上提出了一种安全向量匹配方法,并在该方法的基础上设计了一个口令辅助的生物特征同态认证协议.该协议无需令牌等硬件标识物,注册时只需将带有辅助向量的特征模板密文和辅助向量外包存储,认证时服务器使用辅助向量匹配法完成模板向量和请求向量的相似性评估即可实现用户身份认证.基于Dolev-Yao攻击者模型变种和分布式生物特征认证系统所面临的主要攻击手段对协议进行了安全性分析,并通过和另外2个基于RLWE(learning with error over ring)同态的生物特征认证协议的对比分析,证明了新协议在隐私保护和向量匹配效率方面更具优势.展开更多
By allowing routers to combine the received packets before forwarding them,network coding-based applications are susceptible to possible malicious pollution attacks.Existing solutions for counteracting this issue eith...By allowing routers to combine the received packets before forwarding them,network coding-based applications are susceptible to possible malicious pollution attacks.Existing solutions for counteracting this issue either incur inter-generation pollution attacks(among multiple generations)or suffer high computation/bandwidth overhead.Using a dynamic public key technique,we propose a novel homomorphic signature scheme for network coding for each generation authentication without updating the initial secret key used.As per this idea,the secret key is scrambled for each generation by using the generation identifier,and each packet can be fast signed using the scrambled secret key for the generation to which the packet belongs.The scheme not only can resist intra-generation pollution attacks effectively but also can efficiently prevent inter-generation pollution attacks.Further,the communication overhead of the scheme is small and independent of the size of the transmitting files.展开更多
With the emergence of cloud technologies,the services of healthcare systems have grown.Simultaneously,machine learning systems have become important tools for developing matured and decision-making computer applicatio...With the emergence of cloud technologies,the services of healthcare systems have grown.Simultaneously,machine learning systems have become important tools for developing matured and decision-making computer applications.Both cloud computing and machine learning technologies have contributed significantly to the success of healthcare services.However,in some areas,these technologies are needed to provide and decide the next course of action for patients suffering from diabetic kidney disease(DKD)while ensuring privacy preservation of the medical data.To address the cloud data privacy problem,we proposed a DKD prediction module in a framework using cloud computing services and a data control scheme.This framework can provide improved and early treatment before end-stage renal failure.For prediction purposes,we implemented the following machine learning algorithms:support vector machine(SVM),random forest(RF),decision tree(DT),naïve Bayes(NB),deep learning(DL),and k nearest neighbor(KNN).These classification techniques combined with the cloud computing services significantly improved the decision making in the progress of DKD patients.We applied these classifiers to the UCI Machine Learning Repository for chronic kidney disease using various clinical features,which are categorized as single,combination of selected features,and all features.During single clinical feature experiments,machine learning classifiers SVM,RF,and KNN outperformed the remaining classification techniques,whereas in combined clinical feature experiments,the maximum accuracy was achieved for the combination of DL and RF.All the feature experiments presented increased accuracy and increased F-measure metrics from SVM,DL,and RF.展开更多
Security insurance is a paramount cloud services issue in the most recent decade. Therefore, Mapreduce which is a programming framework for preparing and creating huge data collections should be optimized and securely...Security insurance is a paramount cloud services issue in the most recent decade. Therefore, Mapreduce which is a programming framework for preparing and creating huge data collections should be optimized and securely implemented. But, conventional operations on ciphertexts were not relevant. So there is a foremost need to enable particular sorts of calculations to be done on encrypted data and additionally optimize data processing at the Map stage. Thereby schemes like (DGHV) and (Gen 10) are presented to address data privacy issue. However private encryption key (DGHV) or key’s parameters (Gen 10) are sent to untrusted cloud server which compromise the information security insurance. Therefore, in this paper we propose an optimized homomorphic scheme (Op_FHE_SHCR) which speed up ciphertext (Rc) retrieval and addresses metadata dynamics and authentication through our secure Anonymiser agent. Additionally for the efficiency of our proposed scheme regarding computation cost and security investigation, we utilize a scalar homomorphic approach instead of applying a blinding probabilistic and polynomial-time calculation which is computationally expensive. Doing as such, we apply an optimized ternary search tries (TST) algorithm in our metadata repository which utilizes Merkle hash tree structure to manage metadata authentication and dynamics.展开更多
Network coding can improve network throughput in large, but it is vulnerable to the data pollution attacks. In this paper, we propose an efficient homomorphic message authentication code (MAC) scheme with discrete l...Network coding can improve network throughput in large, but it is vulnerable to the data pollution attacks. In this paper, we propose an efficient homomorphic message authentication code (MAC) scheme with discrete logarithm to detect and locate the malicious nodes. We also prove the security property of the scheme theoretically. Its effectiveness is demonstrated, and overhead is analyzed through extensive experiments.展开更多
文摘分布式生物特征认证系统因不依赖弱口令或硬件标识物而获得高的可靠性、安全性和便利性,但也因生物特征存在永久失效和隐私泄露的风险而面临更多的安全威胁.基于同态加密技术的生物特征认证方案允许特征向量在密文域匹配以保护向量安全和用户隐私,但也因此要在密文域执行昂贵的乘法运算,而且还可能因为向量封装不当而遭受安全攻击.在Brakerski等人同态加密方案的基础上提出了一种安全向量匹配方法,并在该方法的基础上设计了一个口令辅助的生物特征同态认证协议.该协议无需令牌等硬件标识物,注册时只需将带有辅助向量的特征模板密文和辅助向量外包存储,认证时服务器使用辅助向量匹配法完成模板向量和请求向量的相似性评估即可实现用户身份认证.基于Dolev-Yao攻击者模型变种和分布式生物特征认证系统所面临的主要攻击手段对协议进行了安全性分析,并通过和另外2个基于RLWE(learning with error over ring)同态的生物特征认证协议的对比分析,证明了新协议在隐私保护和向量匹配效率方面更具优势.
基金supported by the National Natural Science Foundation of China under Grant No. 61271174
文摘By allowing routers to combine the received packets before forwarding them,network coding-based applications are susceptible to possible malicious pollution attacks.Existing solutions for counteracting this issue either incur inter-generation pollution attacks(among multiple generations)or suffer high computation/bandwidth overhead.Using a dynamic public key technique,we propose a novel homomorphic signature scheme for network coding for each generation authentication without updating the initial secret key used.As per this idea,the secret key is scrambled for each generation by using the generation identifier,and each packet can be fast signed using the scrambled secret key for the generation to which the packet belongs.The scheme not only can resist intra-generation pollution attacks effectively but also can efficiently prevent inter-generation pollution attacks.Further,the communication overhead of the scheme is small and independent of the size of the transmitting files.
文摘With the emergence of cloud technologies,the services of healthcare systems have grown.Simultaneously,machine learning systems have become important tools for developing matured and decision-making computer applications.Both cloud computing and machine learning technologies have contributed significantly to the success of healthcare services.However,in some areas,these technologies are needed to provide and decide the next course of action for patients suffering from diabetic kidney disease(DKD)while ensuring privacy preservation of the medical data.To address the cloud data privacy problem,we proposed a DKD prediction module in a framework using cloud computing services and a data control scheme.This framework can provide improved and early treatment before end-stage renal failure.For prediction purposes,we implemented the following machine learning algorithms:support vector machine(SVM),random forest(RF),decision tree(DT),naïve Bayes(NB),deep learning(DL),and k nearest neighbor(KNN).These classification techniques combined with the cloud computing services significantly improved the decision making in the progress of DKD patients.We applied these classifiers to the UCI Machine Learning Repository for chronic kidney disease using various clinical features,which are categorized as single,combination of selected features,and all features.During single clinical feature experiments,machine learning classifiers SVM,RF,and KNN outperformed the remaining classification techniques,whereas in combined clinical feature experiments,the maximum accuracy was achieved for the combination of DL and RF.All the feature experiments presented increased accuracy and increased F-measure metrics from SVM,DL,and RF.
文摘Security insurance is a paramount cloud services issue in the most recent decade. Therefore, Mapreduce which is a programming framework for preparing and creating huge data collections should be optimized and securely implemented. But, conventional operations on ciphertexts were not relevant. So there is a foremost need to enable particular sorts of calculations to be done on encrypted data and additionally optimize data processing at the Map stage. Thereby schemes like (DGHV) and (Gen 10) are presented to address data privacy issue. However private encryption key (DGHV) or key’s parameters (Gen 10) are sent to untrusted cloud server which compromise the information security insurance. Therefore, in this paper we propose an optimized homomorphic scheme (Op_FHE_SHCR) which speed up ciphertext (Rc) retrieval and addresses metadata dynamics and authentication through our secure Anonymiser agent. Additionally for the efficiency of our proposed scheme regarding computation cost and security investigation, we utilize a scalar homomorphic approach instead of applying a blinding probabilistic and polynomial-time calculation which is computationally expensive. Doing as such, we apply an optimized ternary search tries (TST) algorithm in our metadata repository which utilizes Merkle hash tree structure to manage metadata authentication and dynamics.
基金Supported by the General Program of Science and Technology Development Project of Beijing Municipal Education Commission(KM201311232014)the Opening Project of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research (ICDD201206, ICDD201207)
文摘Network coding can improve network throughput in large, but it is vulnerable to the data pollution attacks. In this paper, we propose an efficient homomorphic message authentication code (MAC) scheme with discrete logarithm to detect and locate the malicious nodes. We also prove the security property of the scheme theoretically. Its effectiveness is demonstrated, and overhead is analyzed through extensive experiments.