Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X...Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.展开更多
In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the d...In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the desired density(95%e99%of maximum dry density).The compacted specimens were tested under the loading frequency of 0.3e1 Hz with medium confinement of 70e100 kPa.Also,the unsymmetrical behavior of the hysteresis loop was analyzed using three different damping estimation approaches,i.e.symmetric hysteresis loop(SHL),asymmetric hysteresis loop(ASHL),and the modified American Society for Testing and Materials(ASTM)method.The outcome of the study shows for fly ash,local soil,and layered soil-ash,the ASHL technique has the highest damping value,followed by ASTM and then the SHL approach.The specimens prepared under high density and subjected to high confinement show low damping values.However,the specimens tested at high frequency exhibits high damping behavior.Similarly,the damping value of fly ash determined using the SHL and ASHL methods has a similar profile and reaches a maximum at 1%shear strain value before decreasing.The composite stratified deposit exhibits more dependency on relative compaction,confining pressure,and less on loading frequency.Based on the results,it is highly recommended to use the ASHL approach,especially under large strain conditions irrespective of soil type.The maximum damping ratio of stratified deposits is always in between the damping ratio of local soil and fly ash.The damping ratio of stratified soil and local soil is slightly larger than that of the other soils,although the damping ratio of fly ash is equivalent to that of the sand and clayey soil.These results may be helpful in the accurate determination of the damping properties of the layered soil-ash system that is required in the seismic response analysis.展开更多
In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system ...In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather than remains stable. However, from a practical point of view, it is always preferred to apply the simplest method to address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model to analyze the failure data from real repairable systems. A graphic method and the Laplace test were also used in the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entire life cycle of repairable systems.展开更多
Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil.This paper presents the results of a series of centrifuge experiments and numerical analy...Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil.This paper presents the results of a series of centrifuge experiments and numerical analyses on a 55°inclined unsaturated sandy slope with less permeable,stronger silty sand layer inclusion within it.It is observed that a less permeable,stronger silty sand layer in an otherwise homogeneous sandy soil slope hinders the infiltration of water.The water content of the slope just above the stronger layer increases significantly,compared to elsewhere.No shear band is found to initiate in a homogeneous sandy soil slope,whereas for a non-homogeneous slope,they initiate just above the less pervious,stronger layer.A discontinuity of the shear zone is also observed for the case of a non-homogeneous soil slope.The factor of safety of a non-homogeneous,unsaturated soil slope decreases because of the less permeable,stronger layer.It decreases significantly if this less permeable,stronger soil layer is located near the toe of the slope.展开更多
基金supported by the National Science Foundation of USA (Grant No. DMS 0400387)the University of Missouri Research Council (Grant No. URC-07-067)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425106)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. 04-0142)
文摘Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.
文摘In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the desired density(95%e99%of maximum dry density).The compacted specimens were tested under the loading frequency of 0.3e1 Hz with medium confinement of 70e100 kPa.Also,the unsymmetrical behavior of the hysteresis loop was analyzed using three different damping estimation approaches,i.e.symmetric hysteresis loop(SHL),asymmetric hysteresis loop(ASHL),and the modified American Society for Testing and Materials(ASTM)method.The outcome of the study shows for fly ash,local soil,and layered soil-ash,the ASHL technique has the highest damping value,followed by ASTM and then the SHL approach.The specimens prepared under high density and subjected to high confinement show low damping values.However,the specimens tested at high frequency exhibits high damping behavior.Similarly,the damping value of fly ash determined using the SHL and ASHL methods has a similar profile and reaches a maximum at 1%shear strain value before decreasing.The composite stratified deposit exhibits more dependency on relative compaction,confining pressure,and less on loading frequency.Based on the results,it is highly recommended to use the ASHL approach,especially under large strain conditions irrespective of soil type.The maximum damping ratio of stratified deposits is always in between the damping ratio of local soil and fly ash.The damping ratio of stratified soil and local soil is slightly larger than that of the other soils,although the damping ratio of fly ash is equivalent to that of the sand and clayey soil.These results may be helpful in the accurate determination of the damping properties of the layered soil-ash system that is required in the seismic response analysis.
文摘In order to analyze the failure data from repairable systems, the homogeneous Poisson process (HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather than remains stable. However, from a practical point of view, it is always preferred to apply the simplest method to address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model to analyze the failure data from real repairable systems. A graphic method and the Laplace test were also used in the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entire life cycle of repairable systems.
文摘Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil.This paper presents the results of a series of centrifuge experiments and numerical analyses on a 55°inclined unsaturated sandy slope with less permeable,stronger silty sand layer inclusion within it.It is observed that a less permeable,stronger silty sand layer in an otherwise homogeneous sandy soil slope hinders the infiltration of water.The water content of the slope just above the stronger layer increases significantly,compared to elsewhere.No shear band is found to initiate in a homogeneous sandy soil slope,whereas for a non-homogeneous slope,they initiate just above the less pervious,stronger layer.A discontinuity of the shear zone is also observed for the case of a non-homogeneous soil slope.The factor of safety of a non-homogeneous,unsaturated soil slope decreases because of the less permeable,stronger layer.It decreases significantly if this less permeable,stronger soil layer is located near the toe of the slope.