A novel diarylethene,namely 4,5-(2,5-dimethyl thiophene) phthalimide,was synthesized and successfully introduced to rewritable holographic data storage.Upon the alternative illumination of UV and visible light(>400...A novel diarylethene,namely 4,5-(2,5-dimethyl thiophene) phthalimide,was synthesized and successfully introduced to rewritable holographic data storage.Upon the alternative illumination of UV and visible light(>400 nm),this compound underwent rapid,reversible inter-conversion between colorless open-ring isomer and yellow-green ring-closed form in both solution and polymethyl methacrylate(PMMA) film.Subsequently,we investigated the characteristics of volume homographic recording of the diarylethene-doped PMMA film(1 m thick).The maximum refractive index modulation(0.87‰) of the film during recording could be reached within just 120 s which gave the ability of fast recording.The high quality reconstruction after 50 write/erase cycles demonstrated its excellent fatigue-resistance and high resolution.All those results indicated that this molecule was a reliable fast write/erase holographic storage material.展开更多
基金supported by the National Natural Science Foundation of China (21073105)the National Basic Research Program of China(2007CB808002)+1 种基金the National High Technology Research and Development Program of China (2012AA030306)Tsinghua University Initiative Scientific Research Program (2011Z23149,2011Z02138)
文摘A novel diarylethene,namely 4,5-(2,5-dimethyl thiophene) phthalimide,was synthesized and successfully introduced to rewritable holographic data storage.Upon the alternative illumination of UV and visible light(>400 nm),this compound underwent rapid,reversible inter-conversion between colorless open-ring isomer and yellow-green ring-closed form in both solution and polymethyl methacrylate(PMMA) film.Subsequently,we investigated the characteristics of volume homographic recording of the diarylethene-doped PMMA film(1 m thick).The maximum refractive index modulation(0.87‰) of the film during recording could be reached within just 120 s which gave the ability of fast recording.The high quality reconstruction after 50 write/erase cycles demonstrated its excellent fatigue-resistance and high resolution.All those results indicated that this molecule was a reliable fast write/erase holographic storage material.