We successfully demonstrate 32-Gbaud Probabilistically Shaped 4096-ary Quadrature Amplitude Modulation(PS-4096QAM)TeraHertz(THz)signal wired transmission at 325 GHz over the 1-m Hollow-Core Fiber(HCF)in a photon-assis...We successfully demonstrate 32-Gbaud Probabilistically Shaped 4096-ary Quadrature Amplitude Modulation(PS-4096QAM)TeraHertz(THz)signal wired transmission at 325 GHz over the 1-m Hollow-Core Fiber(HCF)in a photon-assisted THz-wave communication system.By employing advanced Digital Signal Processing(DSP)and the PS technique,the 352-Gbit/s line rate(288-Gbit/s net rate)delivery with a net Spectral Efficiency(SE)of 9 bit/s/Hz is realized in the experiment,satisfying the 0.86-Normalized Generalized Mutual Information(NGMI)Low-Density Parity-Check(LDPC)threshold.展开更多
Severe polysulfide shuttling and sluggish sulfur redox kinetics significantly decrease sulfur utilization and cycling stability in lithium-sulfur batteries(LSBs).Herein,we develop a hollow CoO/CoP-Box core-shell heter...Severe polysulfide shuttling and sluggish sulfur redox kinetics significantly decrease sulfur utilization and cycling stability in lithium-sulfur batteries(LSBs).Herein,we develop a hollow CoO/CoP-Box core-shell heterostructure as a model and multifunctional catalyst modified on separators to induce interfacial charge modulation and expose more active sites for promoting the adsorption and catalytic conversion ability of sulfur species.Theoretical and experimental findings verify that the in-situ formed core-shell hetero-interface induces the formation of P-Co-O binding and charge redistribution to activate surface O active sites for binding lithium polysulfides(LiPSs)via strong Li-O bonding,thus strongly adsorbing with Li PSs.Meanwhile,the strong Li-O bonding weakens the competing Li-S bonding in LiPSs or Li2S adsorbed on CoO/CoP-Box surface,plus the hollow heterostructure provides abundant active sites and fast electron/Li+transfer,so reducing Li2S nucleation/dissolution activation energy.As expected,LSBs with CoO/CoP-Box modified separator and traditional sulfur/carbon black cathode display a large initial capacity of 1240 mA h g^(-1)and a long cycling stability with 300 cycles(~60.1%capacity retention)at 0.5C.Impressively,the thick sulfur cathode(sulfur loading:5.2 mg cm^(-2))displays a high initial areal capacity of 6.9 mA h cm^(-2).This work verifies a deep mechanism understanding and an effective strategy to induce interfacial charge modulation and enhance active sites for designing efficient dual-directional Li-S catalysts via engineering hollow core-shell hetero-structure.展开更多
Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a n...Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss.We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum,and that this can be calculated from the structural parameters of a fiber using a simple analytical formula.This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength.It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.展开更多
The deviation in wall thickness caused by core shift during the investment casting process significantly impacts the strength and service life of hollow turbine blades.To address this issue,a core shift limitation met...The deviation in wall thickness caused by core shift during the investment casting process significantly impacts the strength and service life of hollow turbine blades.To address this issue,a core shift limitation method is developed in this study.Firstly,a shift model is established based on computational fluid dynamics and motion simulation to predict the movement of the ceramic core in investment casting process.Subsequently,utilizing this model,an optimization method for fixturing layout inside the refractory ceramic shell is devised for the ceramic core.The casting experiment demonstrates that by utilizing the optimized fixture layout,not only can core shift during the investment casting pouring process be effectively controlled,but also the maximum wall thickness error of the blade can be reduced by 42.02%.In addition,the core shift prediction is also validated,with a prediction error of less than 26.9%.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The output power of the fabricated fiber can come to 18 W, with the transmission loss of 1.23 dB/m at 10.6 μm....A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The output power of the fabricated fiber can come to 18 W, with the transmission loss of 1.23 dB/m at 10.6 μm. The mechanism of transmitting CO2 laser by the fiber is analyzed, the transmitting loss is further discussed and its application fields are envisaged.展开更多
We review the use of hollow-core photonic crystal fibre(HC-PCF)for high power laser beam delivery.A comparison of bandgap HC-PCF with Kagome-lattice HC-PCF on the geometry,guidance mechanism,and optical properties sho...We review the use of hollow-core photonic crystal fibre(HC-PCF)for high power laser beam delivery.A comparison of bandgap HC-PCF with Kagome-lattice HC-PCF on the geometry,guidance mechanism,and optical properties shows that the Kagome-type HC-PCF is an ideal host for high power laser beam transportation because of its large core size,low attenuation,broadband transmission,single-mode guidance,low dispersion and the ultra-low optical overlap between the core-guided modes and the silica core-surround.The power handling capability of Kagome-type HC-PCF is further experimentally demonstrated by millijoule nanosecond laser spark ignition and^100μJ sub-picosecond laser pulse transportation and compression.展开更多
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
A major problem of plastic optical fibers(POFs) is large transmission loss in comparison with silica fibers.After adopting a new optical fiber structure,hollow-core Bragg fiber with cobweb-structured cladding,which ca...A major problem of plastic optical fibers(POFs) is large transmission loss in comparison with silica fibers.After adopting a new optical fiber structure,hollow-core Bragg fiber with cobweb-structured cladding,which can suppress the absorption losses of constituent materials by a factor of about 104―106,the problem of POFs with large losses is solved ultimately.With the advantage of flexibility and easy bending,the POFs with this structure can guide light with low transmission loss for information and energy in the wavelength range of visible light to terahertz(THz) wave(0.4―1000 μm).This new generation of POFs will find many applications.展开更多
A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The inner diameter of the fiber is φ0.8mm, with the transmission loss of 1.23dB/m at 10.6μm. The mechanism of...A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The inner diameter of the fiber is φ0.8mm, with the transmission loss of 1.23dB/m at 10.6μm. The mechanism of transmitting CO_2 laser by the fiber is analyzed. The transmitting performances are discussed and its application fields are envisaged.展开更多
Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict ...Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict their functionality in complex applications.Hierarchical morphology introduces additional and distinctive structural layers onto electrospun fibers.This requires either an extra fabrication step or controlling electrospinning parameters to achieve the desired morphology.Hierarchical morphology can improve the properties of electrospun nanofibers while also mitigating the undesired characteristics.This review discusses the primary and secondary hierarchical structures of electrospun nanomaterials.Hierarchical structures were found to enhance the functionality of nanomaterials and improve pore connectivity and surface areas of electrospun nanofibers.A further advantage is the ability to impart multiple functionalities on nanostructures.With a better understanding of some of the dominant hierarchical structures,nanomaterials applications in drug delivery,tissue engineering,catalysis,and energy devices industries can be improved.展开更多
We report all-optical mid-infrared phase and intensity modulators based on the photo-thermal effect in an acetylene-filled anti-resonant hollow-core fiber.Optical absorption of the control beam promotes the gas molecu...We report all-optical mid-infrared phase and intensity modulators based on the photo-thermal effect in an acetylene-filled anti-resonant hollow-core fiber.Optical absorption of the control beam promotes the gas molecules to a higher energy level,which induces localized heating through non-radiative relaxation and modulates the refractive index of the gas material and hence the accumulated phase of the signal beam propagating through the hollow-core fiber.By modulating the intensity of the control beam,the phase of the signal beam is modulated accordingly.By use of a 1.53μm near-infrared control beam,all-optical phase modulation up to 2.2πrad is experimentally demonstrated at the signal wavelength of 3.35μm.With the phase modulator placed in one arm of a Mach-Zehnder interferometer,intensity modulation with on-off ratio of 25 dB is achieved.The gas-filled hollow-core-fiber modulators could operate over an ultra-broad wavelength band from near-to mid-infrared and have promising application in mid-infrared photonic systems.展开更多
We report here on a diode-pumped pulsed mid-infrared laser source based on gas-filled hollow-core fibers(HCFs)towards an all-fiber structure by the tapering method. The pump laser is coupled into an acetylene-filled H...We report here on a diode-pumped pulsed mid-infrared laser source based on gas-filled hollow-core fibers(HCFs)towards an all-fiber structure by the tapering method. The pump laser is coupled into an acetylene-filled HCF through a tapered single-mode fiber. By precisely tuning the wavelength of the diode to match different absorption lines of acetylene near 1.5 μm, mid-infrared emission around 3.1–3.2 μm is generated. With 2 m HCFs and3 mbar acetylene gas, a maximum average power of 130 m W is obtained with a laser slope efficiency of ~24%.This work provides a potential scheme for all-fiber mid-infrared fiber gas lasers.展开更多
基金supported by National Key R&D Program of China(2018YFB1800900)National Natural Science Foundation of China(61935005,91938202,61720106015,61835002,61805043,62127802).
文摘We successfully demonstrate 32-Gbaud Probabilistically Shaped 4096-ary Quadrature Amplitude Modulation(PS-4096QAM)TeraHertz(THz)signal wired transmission at 325 GHz over the 1-m Hollow-Core Fiber(HCF)in a photon-assisted THz-wave communication system.By employing advanced Digital Signal Processing(DSP)and the PS technique,the 352-Gbit/s line rate(288-Gbit/s net rate)delivery with a net Spectral Efficiency(SE)of 9 bit/s/Hz is realized in the experiment,satisfying the 0.86-Normalized Generalized Mutual Information(NGMI)Low-Density Parity-Check(LDPC)threshold.
基金supported by the National Natural Science Foundation of China(51972066)the Natural Science Foundation of Guangdong Province of China(2021A1515011718)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2017。
文摘Severe polysulfide shuttling and sluggish sulfur redox kinetics significantly decrease sulfur utilization and cycling stability in lithium-sulfur batteries(LSBs).Herein,we develop a hollow CoO/CoP-Box core-shell heterostructure as a model and multifunctional catalyst modified on separators to induce interfacial charge modulation and expose more active sites for promoting the adsorption and catalytic conversion ability of sulfur species.Theoretical and experimental findings verify that the in-situ formed core-shell hetero-interface induces the formation of P-Co-O binding and charge redistribution to activate surface O active sites for binding lithium polysulfides(LiPSs)via strong Li-O bonding,thus strongly adsorbing with Li PSs.Meanwhile,the strong Li-O bonding weakens the competing Li-S bonding in LiPSs or Li2S adsorbed on CoO/CoP-Box surface,plus the hollow heterostructure provides abundant active sites and fast electron/Li+transfer,so reducing Li2S nucleation/dissolution activation energy.As expected,LSBs with CoO/CoP-Box modified separator and traditional sulfur/carbon black cathode display a large initial capacity of 1240 mA h g^(-1)and a long cycling stability with 300 cycles(~60.1%capacity retention)at 0.5C.Impressively,the thick sulfur cathode(sulfur loading:5.2 mg cm^(-2))displays a high initial areal capacity of 6.9 mA h cm^(-2).This work verifies a deep mechanism understanding and an effective strategy to induce interfacial charge modulation and enhance active sites for designing efficient dual-directional Li-S catalysts via engineering hollow core-shell hetero-structure.
文摘Understanding bend loss in single-ring hollow-core photonic crystal fibers(PCFs)is becoming of increasing importance as the fibers enter practical applications.While purely numerical approaches are useful,there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss.We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum,and that this can be calculated from the structural parameters of a fiber using a simple analytical formula.This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength.It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.
基金the National Natural Science Foundation of China(Grant No.52005311)the Scientific and the National Science and Technology Major Project(Grant No.J2019-VII-0013-0153)Research Project Supported by Shanxi Scholarship Council of China(Grant No.2023-003).
文摘The deviation in wall thickness caused by core shift during the investment casting process significantly impacts the strength and service life of hollow turbine blades.To address this issue,a core shift limitation method is developed in this study.Firstly,a shift model is established based on computational fluid dynamics and motion simulation to predict the movement of the ceramic core in investment casting process.Subsequently,utilizing this model,an optimization method for fixturing layout inside the refractory ceramic shell is devised for the ceramic core.The casting experiment demonstrates that by utilizing the optimized fixture layout,not only can core shift during the investment casting pouring process be effectively controlled,but also the maximum wall thickness error of the blade can be reduced by 42.02%.In addition,the core shift prediction is also validated,with a prediction error of less than 26.9%.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
文摘A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The output power of the fabricated fiber can come to 18 W, with the transmission loss of 1.23 dB/m at 10.6 μm. The mechanism of transmitting CO2 laser by the fiber is analyzed, the transmitting loss is further discussed and its application fields are envisaged.
文摘We review the use of hollow-core photonic crystal fibre(HC-PCF)for high power laser beam delivery.A comparison of bandgap HC-PCF with Kagome-lattice HC-PCF on the geometry,guidance mechanism,and optical properties shows that the Kagome-type HC-PCF is an ideal host for high power laser beam transportation because of its large core size,low attenuation,broadband transmission,single-mode guidance,low dispersion and the ultra-low optical overlap between the core-guided modes and the silica core-surround.The power handling capability of Kagome-type HC-PCF is further experimentally demonstrated by millijoule nanosecond laser spark ignition and^100μJ sub-picosecond laser pulse transportation and compression.
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金the National Natural Science Foundation of China(Grant Nos.60444003,60577009)
文摘A major problem of plastic optical fibers(POFs) is large transmission loss in comparison with silica fibers.After adopting a new optical fiber structure,hollow-core Bragg fiber with cobweb-structured cladding,which can suppress the absorption losses of constituent materials by a factor of about 104―106,the problem of POFs with large losses is solved ultimately.With the advantage of flexibility and easy bending,the POFs with this structure can guide light with low transmission loss for information and energy in the wavelength range of visible light to terahertz(THz) wave(0.4―1000 μm).This new generation of POFs will find many applications.
基金Supported by the High Technology Research and Development Programme of China
文摘A method of fabricating pure germanium dioxide hollow-core fibers has been introduced for the first time. The inner diameter of the fiber is φ0.8mm, with the transmission loss of 1.23dB/m at 10.6μm. The mechanism of transmitting CO_2 laser by the fiber is analyzed. The transmitting performances are discussed and its application fields are envisaged.
文摘Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict their functionality in complex applications.Hierarchical morphology introduces additional and distinctive structural layers onto electrospun fibers.This requires either an extra fabrication step or controlling electrospinning parameters to achieve the desired morphology.Hierarchical morphology can improve the properties of electrospun nanofibers while also mitigating the undesired characteristics.This review discusses the primary and secondary hierarchical structures of electrospun nanomaterials.Hierarchical structures were found to enhance the functionality of nanomaterials and improve pore connectivity and surface areas of electrospun nanofibers.A further advantage is the ability to impart multiple functionalities on nanostructures.With a better understanding of some of the dominant hierarchical structures,nanomaterials applications in drug delivery,tissue engineering,catalysis,and energy devices industries can be improved.
基金supported by the National Key Research and Development Program of China(2019YFB2203904)National Natural Science Foundation of China(61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report all-optical mid-infrared phase and intensity modulators based on the photo-thermal effect in an acetylene-filled anti-resonant hollow-core fiber.Optical absorption of the control beam promotes the gas molecules to a higher energy level,which induces localized heating through non-radiative relaxation and modulates the refractive index of the gas material and hence the accumulated phase of the signal beam propagating through the hollow-core fiber.By modulating the intensity of the control beam,the phase of the signal beam is modulated accordingly.By use of a 1.53μm near-infrared control beam,all-optical phase modulation up to 2.2πrad is experimentally demonstrated at the signal wavelength of 3.35μm.With the phase modulator placed in one arm of a Mach-Zehnder interferometer,intensity modulation with on-off ratio of 25 dB is achieved.The gas-filled hollow-core-fiber modulators could operate over an ultra-broad wavelength band from near-to mid-infrared and have promising application in mid-infrared photonic systems.
基金supported by the Outstanding Youth Science Fund Project of Hunan Provincial Natural Science Foundation(No.2019JJ20023)the National Natural Science Foundation of China(NSFC)(No.61705266)
文摘We report here on a diode-pumped pulsed mid-infrared laser source based on gas-filled hollow-core fibers(HCFs)towards an all-fiber structure by the tapering method. The pump laser is coupled into an acetylene-filled HCF through a tapered single-mode fiber. By precisely tuning the wavelength of the diode to match different absorption lines of acetylene near 1.5 μm, mid-infrared emission around 3.1–3.2 μm is generated. With 2 m HCFs and3 mbar acetylene gas, a maximum average power of 130 m W is obtained with a laser slope efficiency of ~24%.This work provides a potential scheme for all-fiber mid-infrared fiber gas lasers.