In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation...In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation results show that the performance of our presented mechanism in this paper is greatly improved, much better than that of the other three mechanisms: earliest deadline first (EDF), highest value first (HVF) and highest density first (HDF), under the same conditions of all nominal loads and task type proportions.展开更多
基金supported by the Shanghai Applied Materials Foundation (Grant No.06SA18)
文摘In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation results show that the performance of our presented mechanism in this paper is greatly improved, much better than that of the other three mechanisms: earliest deadline first (EDF), highest value first (HVF) and highest density first (HDF), under the same conditions of all nominal loads and task type proportions.