The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 so...The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 solar terms as recorded in the book. Special attention is paid to the so-called law of ‘cun qian li’, which says the shadow length of a gnomon of 8 chi (about 1.96 m) high will increase (or decrease) 1 cun (1/10chi) for every 10001i (roughly 400kin) the gnomon moves northward (or south- ward). From these data, one can derive the time and location of the observations. The resuits, however, do not fit historical facts. We suggest that compilers of the Zhoubi Suanjing must have modified the original data according to the law of ‘cun qian li’. Through reversing the situation, we recovered the original data, our analysis of which reveals the best possible observation time as 564 BC and the location of observation as 35.78° N latitude. We conclude that this must be the earliest records of solar meridian observations in China. In the meantime, we give the errors of solar altitudes for the 24 solar terms. The average deviation is 5.22°, and the mean absolute deviation is 5.52°, signifying the accuracy of astronomical calculations from that time.展开更多
We study interval constants that are related to motions of the Sun and Moon, i.e., the Qi, Intercalation, Revolution and Crossing interval, in calendars affiliated with the Shoushi calendar (Shoushili), such as Dato...We study interval constants that are related to motions of the Sun and Moon, i.e., the Qi, Intercalation, Revolution and Crossing interval, in calendars affiliated with the Shoushi calendar (Shoushili), such as Datongli and Chiljeongsannaepyeon. It is known that these interval constants were newly introduced in the Shoushili calendar and revised afterward, except for the Qi interval constant, and the revised values were adopted in later calendars affiliated with the Shoushili. We first investigate the accu- racy of these interval constants and then the accuracy of calendars affiliated with the Shoushili in terms of these constants by comparing times for the new moon and the maximum solar eclipse calculated by each calendar with modem methods of calcula- tion. During our study, we found that the Qi and Intercalation interval constants used in the early Shoushili were well determined, whereas the Revolution and Crossing interval constants were relatively poorly measured. We also found that the interval constants used by the early Shoushili were better than those of the later one, and hence better than those of Datongli and Chiljeongsannaepyeon. On the other hand, we found that the early Shoushili is, in general, a worse calendar than Datongli for use in China but a better one than Chiljeongsannaepyeon for use in Korea in terms of times for the new moon and when a solar eclipse occurs, at least for the period 1281 - 1644. Finally, we verified that the times for sunrise and sunset in the Shoushili-Li-Cheng and Mingshi are those at Beijing and Nanjing, respectively.展开更多
The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Me...The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10973022 and 10873039)
文摘The Zhoubi Suanjing, one of the most important ancient Chinese books on mathematical astronomy, was compiled about 100 BC in the Western Han dynasty (BC 206 - AD 23). We study the gnomon shadow lengths for the 24 solar terms as recorded in the book. Special attention is paid to the so-called law of ‘cun qian li’, which says the shadow length of a gnomon of 8 chi (about 1.96 m) high will increase (or decrease) 1 cun (1/10chi) for every 10001i (roughly 400kin) the gnomon moves northward (or south- ward). From these data, one can derive the time and location of the observations. The resuits, however, do not fit historical facts. We suggest that compilers of the Zhoubi Suanjing must have modified the original data according to the law of ‘cun qian li’. Through reversing the situation, we recovered the original data, our analysis of which reveals the best possible observation time as 564 BC and the location of observation as 35.78° N latitude. We conclude that this must be the earliest records of solar meridian observations in China. In the meantime, we give the errors of solar altitudes for the 24 solar terms. The average deviation is 5.22°, and the mean absolute deviation is 5.52°, signifying the accuracy of astronomical calculations from that time.
基金Ki-Won Lee is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2013747)
文摘We study interval constants that are related to motions of the Sun and Moon, i.e., the Qi, Intercalation, Revolution and Crossing interval, in calendars affiliated with the Shoushi calendar (Shoushili), such as Datongli and Chiljeongsannaepyeon. It is known that these interval constants were newly introduced in the Shoushili calendar and revised afterward, except for the Qi interval constant, and the revised values were adopted in later calendars affiliated with the Shoushili. We first investigate the accu- racy of these interval constants and then the accuracy of calendars affiliated with the Shoushili in terms of these constants by comparing times for the new moon and the maximum solar eclipse calculated by each calendar with modem methods of calcula- tion. During our study, we found that the Qi and Intercalation interval constants used in the early Shoushili were well determined, whereas the Revolution and Crossing interval constants were relatively poorly measured. We also found that the interval constants used by the early Shoushili were better than those of the later one, and hence better than those of Datongli and Chiljeongsannaepyeon. On the other hand, we found that the early Shoushili is, in general, a worse calendar than Datongli for use in China but a better one than Chiljeongsannaepyeon for use in Korea in terms of times for the new moon and when a solar eclipse occurs, at least for the period 1281 - 1644. Finally, we verified that the times for sunrise and sunset in the Shoushili-Li-Cheng and Mingshi are those at Beijing and Nanjing, respectively.
文摘The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.