针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检...针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。展开更多
文摘针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。