Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclos...Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies.展开更多
Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displ...Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods,in terms of design steps,advantages/disadvantages,and structure responses.In addition,this paper investigates the building height below which the HW seismic moment demand can be properly controlled.First,3-story,9-story,and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs.Secondly,HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods,called HWFs and HWBBFs,respectively.Thirdly,nonlinear time history analyses are conducted to compare the structural responses of the MRFs,HWBBFs and HWFs in earthquakes.The results show the following.1)HW seismic force demands increase as structural height increases,which may lead to uneconomical HW design.The HW seismic moment demand can be properly controlled when the building is lower than nine stories.2)The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process,as well as better achieving the design target displacement.展开更多
To understand how a woodpecker is able accelerate its head to such a high velocity in a short amount of time,a multi-rigid-segment model of a woodpecker's body is established in this study.Based on the skeletal speci...To understand how a woodpecker is able accelerate its head to such a high velocity in a short amount of time,a multi-rigid-segment model of a woodpecker's body is established in this study.Based on the skeletal specimen of the woodpecker and several videos of woodpeckers pecking,the parameters of a three-degree-of-freedom system are determined.The high velocity of the head is found to be the result of a whipping effect,which could be affected by muscle torque and tendon stiffness.The mechanism of whipping is analyzed by comparing the response of a hinged rod to that of a rigid rod.Depending on the parameters,the dynamic behavior of a hinged rod is classified into three response modes.Of these,a high free-end velocity could be achieved in mode II.The model is then generalized to a multihinge condition,and the free-end velocity is found to increase with hinge number,which explains the high free-end velocity resulting from whipping.Furthermore,the effects of some other factors,such as damping and mass distribution,on the velocity are also discussed.展开更多
This paper presents the shear performance analysis of a heavy-duty universal hinged cast steel support with the largest bearing capacity. The effect of 9 parameters ( 52 specimens) ,i. e. height of the upper support,d...This paper presents the shear performance analysis of a heavy-duty universal hinged cast steel support with the largest bearing capacity. The effect of 9 parameters ( 52 specimens) ,i. e. height of the upper support,depth of the ring of the upper support,depth of the top plate of the bottom support,height of the ribs of the bottom support,depth of the ribs of the bottom support,bolt hole diameter,number of the ribs of the bowl,depth of the ribs of the bowl,and yield strength of the material,were analyzed with a 3-dimensional elastic-plastic finite element model in which the nonlinearities of geometry,material and contact were all considered. Analysis shows that height of the upper support,depth of the ring of the upper support and yield strength of the material have a great effect on the mechanical performance of the support. Height of the upper support has the largest effect on performance price ratio of the support,and the maximum effect can be up to 160% . Depth of the top plate of the bottom support,height of the ribs of the bottom support and depth of the ribs of the bottom support have a medium effect on performance price ratio of the support,and the effect is within the limit of 15% 19% .展开更多
Study of dynamic stability phenomenon in transient systems has always created interest amongst the researchers because of its inherent non-linearities. Offshore structures subjected to wave, earthquake or wind loads o...Study of dynamic stability phenomenon in transient systems has always created interest amongst the researchers because of its inherent non-linearities. Offshore structures subjected to wave, earthquake or wind loads or a combination of these loads show non-linear transient behaviour. As oceanic waves are better modelled as stochastic process, there is a need to investigate the stochastic stability of flexible offshore structures as well. Present study has been carried out to determine seismic response of Single Hinged Articulated Tower (SHAT) under different categories of wave loads and earthquake followed by its dynamic stability analysis. Different phases of wave/earthquake loading on SHAT have been explored to investigate dynamic instabilities existing during each phase. Two dimensional phase plots have been used to identify phases of dynamic instability existing within the responses of SHAT under various conditions of loading.展开更多
Active vibration control for a kind of two-hinged plate is developed in this paper. A finite element model for the hinged plate integrated with distributed piezoelectric sensors and actuators is derived, including ben...Active vibration control for a kind of two-hinged plate is developed in this paper. A finite element model for the hinged plate integrated with distributed piezoelectric sensors and actuators is derived, including bending and torsional modes of vibration. In this model, the hinges are simplified as regular plate elements to facilitate operation. The state space representations for bending and torsional vibrations are obtained. Based on two low-order models of the bending and torsional motion, two H∞ robust controllers are designed for suppressing the vibrations of the bending and torsional modes, respectively. The simulation results indicate the effectiveness and feasibility of the designed H~~ controllers. The vibration magnitudes of the low-order modes can be reduced without affecting the high frequency modes.展开更多
In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated ...In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.展开更多
This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions, it obtains an existence and uniqueness theorem of glo...This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions, it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations, by means of the Galerkin method. Moreover, it also proves the existence of strong and classical solutions.展开更多
Hinged booms are widely used in astrophysics missions;however,the trajectory and deployment velocity are difficult to control because they are usually driven by springs,which limits their application in narrow spaces....Hinged booms are widely used in astrophysics missions;however,the trajectory and deployment velocity are difficult to control because they are usually driven by springs,which limits their application in narrow spaces.Thus,a novel hinged boom is highly required to achieve motion controllability.Through an equivalent substitution between the cable drive loop and the binary link in topology,a type synthesis method for the cable-driven single-degree-of-freedom chain is proposed based on the single-open-chain(SOC)adding method.According to the configuration design,a novel cable-driven hinged boom is proposed,aiming to achieve boom synchronism.Then,to preload easily,a method that preload is applied and measured at the cable ends is adopted and the relationship between the initial preload and the target preload is deduced.By analyzing the distribution of cable tension,a new stiffness model is proposed thus a stiffness equation is obtained.Finally,the dynamic simulation analysis and zero-gravity deployment experiment of the hinged boom is carried out to verify its reliability.This research provides a new way for the type synthesis of cable-driven single-degree-of-freedom chain and a new model for analyzing cable-driven stiffness.Moreover,the novel cable-driven hinged boom obtained in this study can be well-applied in the field of aerospace.展开更多
基金Financial support for this work, provided by the Research Fund of the Fundamental Research Funds for the Central Universities of China University of Mining & Technology (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X2)+1 种基金the Jiangsu "333" High Qualified Talents, the National Natural Science Foundation of China (Nos. 50904063 and 51004101)the Scientific Research Foundation of China University of Mining & Technology (Nos. 2008A003 and 2009A001)
文摘Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies.
基金financially supported by the National Natural Science Foundation of China(Grant No.51708166)the Natural Science Foundation of Anhui Province(No.2208085ME150).
文摘Previous research has shown that using buckling-restrained braces(BRBs)at hinged wall(HW)base(HWBB)can effectively mitigate lateral deformation of steel moment-resisting frames(MRFs)in earthquakes.Forcebased and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods,in terms of design steps,advantages/disadvantages,and structure responses.In addition,this paper investigates the building height below which the HW seismic moment demand can be properly controlled.First,3-story,9-story,and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs.Secondly,HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods,called HWFs and HWBBFs,respectively.Thirdly,nonlinear time history analyses are conducted to compare the structural responses of the MRFs,HWBBFs and HWFs in earthquakes.The results show the following.1)HW seismic force demands increase as structural height increases,which may lead to uneconomical HW design.The HW seismic moment demand can be properly controlled when the building is lower than nine stories.2)The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process,as well as better achieving the design target displacement.
基金support of the National Natural Science Foundation of China(NSFC)(Grant 11372163)the National Fundamental Research Program of China (Grant 2011CB610305)the support of the NSFC Key Project 11032001
文摘To understand how a woodpecker is able accelerate its head to such a high velocity in a short amount of time,a multi-rigid-segment model of a woodpecker's body is established in this study.Based on the skeletal specimen of the woodpecker and several videos of woodpeckers pecking,the parameters of a three-degree-of-freedom system are determined.The high velocity of the head is found to be the result of a whipping effect,which could be affected by muscle torque and tendon stiffness.The mechanism of whipping is analyzed by comparing the response of a hinged rod to that of a rigid rod.Depending on the parameters,the dynamic behavior of a hinged rod is classified into three response modes.Of these,a high free-end velocity could be achieved in mode II.The model is then generalized to a multihinge condition,and the free-end velocity is found to increase with hinge number,which explains the high free-end velocity resulting from whipping.Furthermore,the effects of some other factors,such as damping and mass distribution,on the velocity are also discussed.
基金Sponsored by the National Natural Science Foundation of China( Grant No. 50878066)the National Key Technology R&D Program during the 11th Five-Year Plan Period of China( Grant No. 2006BAJ01B02)
文摘This paper presents the shear performance analysis of a heavy-duty universal hinged cast steel support with the largest bearing capacity. The effect of 9 parameters ( 52 specimens) ,i. e. height of the upper support,depth of the ring of the upper support,depth of the top plate of the bottom support,height of the ribs of the bottom support,depth of the ribs of the bottom support,bolt hole diameter,number of the ribs of the bowl,depth of the ribs of the bowl,and yield strength of the material,were analyzed with a 3-dimensional elastic-plastic finite element model in which the nonlinearities of geometry,material and contact were all considered. Analysis shows that height of the upper support,depth of the ring of the upper support and yield strength of the material have a great effect on the mechanical performance of the support. Height of the upper support has the largest effect on performance price ratio of the support,and the maximum effect can be up to 160% . Depth of the top plate of the bottom support,height of the ribs of the bottom support and depth of the ribs of the bottom support have a medium effect on performance price ratio of the support,and the effect is within the limit of 15% 19% .
文摘Study of dynamic stability phenomenon in transient systems has always created interest amongst the researchers because of its inherent non-linearities. Offshore structures subjected to wave, earthquake or wind loads or a combination of these loads show non-linear transient behaviour. As oceanic waves are better modelled as stochastic process, there is a need to investigate the stochastic stability of flexible offshore structures as well. Present study has been carried out to determine seismic response of Single Hinged Articulated Tower (SHAT) under different categories of wave loads and earthquake followed by its dynamic stability analysis. Different phases of wave/earthquake loading on SHAT have been explored to investigate dynamic instabilities existing during each phase. Two dimensional phase plots have been used to identify phases of dynamic instability existing within the responses of SHAT under various conditions of loading.
基金Project supported by the General Projects of the National Natural Science Foundation of China(Nos.51175181 and 90505014)the Fundamental Research Funds for the Central Universities,SCUT(Nos.2012ZZ0060 and 2014ZG0019)
文摘Active vibration control for a kind of two-hinged plate is developed in this paper. A finite element model for the hinged plate integrated with distributed piezoelectric sensors and actuators is derived, including bending and torsional modes of vibration. In this model, the hinges are simplified as regular plate elements to facilitate operation. The state space representations for bending and torsional vibrations are obtained. Based on two low-order models of the bending and torsional motion, two H∞ robust controllers are designed for suppressing the vibrations of the bending and torsional modes, respectively. The simulation results indicate the effectiveness and feasibility of the designed H~~ controllers. The vibration magnitudes of the low-order modes can be reduced without affecting the high frequency modes.
文摘In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.
基金supported by the Natural Science Foundation of Shanxi Province,China (Grant No 200611005)the National Natural Science Foundation of China (Grant No 10772131)
文摘This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions, it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations, by means of the Galerkin method. Moreover, it also proves the existence of strong and classical solutions.
基金co-supported by the National Natural Science Foundation of China(No51775052)Beijing Natural Science Foundation(No.21C10109)+1 种基金Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment&Technology(No.FMZ202022)Beijing Municipal Key Laboratory of Space-ground Interconnection and Convergence of China。
文摘Hinged booms are widely used in astrophysics missions;however,the trajectory and deployment velocity are difficult to control because they are usually driven by springs,which limits their application in narrow spaces.Thus,a novel hinged boom is highly required to achieve motion controllability.Through an equivalent substitution between the cable drive loop and the binary link in topology,a type synthesis method for the cable-driven single-degree-of-freedom chain is proposed based on the single-open-chain(SOC)adding method.According to the configuration design,a novel cable-driven hinged boom is proposed,aiming to achieve boom synchronism.Then,to preload easily,a method that preload is applied and measured at the cable ends is adopted and the relationship between the initial preload and the target preload is deduced.By analyzing the distribution of cable tension,a new stiffness model is proposed thus a stiffness equation is obtained.Finally,the dynamic simulation analysis and zero-gravity deployment experiment of the hinged boom is carried out to verify its reliability.This research provides a new way for the type synthesis of cable-driven single-degree-of-freedom chain and a new model for analyzing cable-driven stiffness.Moreover,the novel cable-driven hinged boom obtained in this study can be well-applied in the field of aerospace.