Due to the uncertain fluctuations of renewable energy and load power, the state variables such as bus voltages and pipeline mass flows in the combined cooling, heating, and power campus microgrid(CCHP-CMG) may exceed ...Due to the uncertain fluctuations of renewable energy and load power, the state variables such as bus voltages and pipeline mass flows in the combined cooling, heating, and power campus microgrid(CCHP-CMG) may exceed the secure operation limits. In this paper, an optimal energy flow(OEF) model for a CCHP-CMG using parameterized probability boxes(p-boxes) is proposed to describe the higher-order uncertainty of renewables and loads. In the model, chance constraints are used to describe the secure operation limits of the state variable p-boxes, and variance constraints are introduced to reduce their random fluctuation ranges. To solve this model, the chance and variance constraints are transformed into the constraints of interval cumulants(ICs) of state variables based on the p-efficient point theory and interval Cornish-Fisher expansion. With the relationship between the ICs of state variables and node power, and using the affine interval arithmetic method, the original optimization model is finally transformed into a deterministic nonlinear programming model. It can be solved by the CONOPT solver in GAMS software to obtain the optimal operation point of a CCHP-CMG that satisfies the secure operation requirements considering the higher-order uncertainty of renewables and loads. Case study on a CCHP-CMG demonstrates the correctness and effectiveness of the proposed OEF model.展开更多
It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squ...It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.展开更多
基金supported by the National Natural Science Foundation of China (No. 51977080)the Natural Science Foundation of Guangdong Province (No. 2022A1515010332)。
文摘Due to the uncertain fluctuations of renewable energy and load power, the state variables such as bus voltages and pipeline mass flows in the combined cooling, heating, and power campus microgrid(CCHP-CMG) may exceed the secure operation limits. In this paper, an optimal energy flow(OEF) model for a CCHP-CMG using parameterized probability boxes(p-boxes) is proposed to describe the higher-order uncertainty of renewables and loads. In the model, chance constraints are used to describe the secure operation limits of the state variable p-boxes, and variance constraints are introduced to reduce their random fluctuation ranges. To solve this model, the chance and variance constraints are transformed into the constraints of interval cumulants(ICs) of state variables based on the p-efficient point theory and interval Cornish-Fisher expansion. With the relationship between the ICs of state variables and node power, and using the affine interval arithmetic method, the original optimization model is finally transformed into a deterministic nonlinear programming model. It can be solved by the CONOPT solver in GAMS software to obtain the optimal operation point of a CCHP-CMG that satisfies the secure operation requirements considering the higher-order uncertainty of renewables and loads. Case study on a CCHP-CMG demonstrates the correctness and effectiveness of the proposed OEF model.
文摘It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.