The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly ...The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.展开更多
A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the i...A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.展开更多
High-static-low-dynamic-stiffness(HSLDS) nonlinear isolators have proven to have an advantage over linear isolators, because HSLDS nonlinear isolators allow low-frequency vibration isolation without compromising the s...High-static-low-dynamic-stiffness(HSLDS) nonlinear isolators have proven to have an advantage over linear isolators, because HSLDS nonlinear isolators allow low-frequency vibration isolation without compromising the static stiffness. Previously, these isolators have generally been assumed to have linear viscous damping, degrading the performance of the isolator at high frequencies. An alternative is to use nonlinear damping, where the nonlinear behavior is achieved by configuring linear dampers so they are orthogonally aligned to the excitation direction. This report compares the performances of single-stage and two-stage isolators with this type of damping with the corresponding isolators containing only linear viscous damping. The results show that both isolators with linear viscous damping and nonlinear damping reduce the transmissibility around the resonance frequencies, but the results show that the isolators with nonlinear damping perform better at high frequencies.展开更多
High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers...High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators.展开更多
基金Supported by the Planned Science and Technology Project of Xiamen Municipality(Grant No.3502Z20183033)Research Project of State Key Laboratory of Mechanical System and Vibration(MSV201901)Key Science and Technology Projects of the Ministry of Transport of China(2018-MS2-058)
基金Project(KYLX15_0256)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(SV2015-KF-01)supported by the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,ChinaProject(XZA15003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
文摘A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.
基金supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11232009)the National Natural Science Foundation of China (Grant Nos. 11502135 & 11572182)the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-09-E00019)
文摘High-static-low-dynamic-stiffness(HSLDS) nonlinear isolators have proven to have an advantage over linear isolators, because HSLDS nonlinear isolators allow low-frequency vibration isolation without compromising the static stiffness. Previously, these isolators have generally been assumed to have linear viscous damping, degrading the performance of the isolator at high frequencies. An alternative is to use nonlinear damping, where the nonlinear behavior is achieved by configuring linear dampers so they are orthogonally aligned to the excitation direction. This report compares the performances of single-stage and two-stage isolators with this type of damping with the corresponding isolators containing only linear viscous damping. The results show that both isolators with linear viscous damping and nonlinear damping reduce the transmissibility around the resonance frequencies, but the results show that the isolators with nonlinear damping perform better at high frequencies.
基金Project supported by the National Natural Science Foundation of China(Nos.62188101,12272103,12022213)。
文摘High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators.