Based on the recently proposed mirror-assisted multi-view digital image correlation(MV-DIC),we establish a cost-effective and easy-to-implement mirror-assisted multi-view high-speed digital image correlation(MVHS-DIC)...Based on the recently proposed mirror-assisted multi-view digital image correlation(MV-DIC),we establish a cost-effective and easy-to-implement mirror-assisted multi-view high-speed digital image correlation(MVHS-DIC)method and explore its applications for dual-surface full-field dynamic deformation measurement.In contrast to the general requirement of four expensive high-speed cameras for dual-surface dynamic deformation field measurement,the established mirror-assisted MVHS-DIC halves the cost by involving only two synchronized high-speed cameras and two planar mirrors.The two synchronized high-speed cameras can dynamically measure the front and rear surfaces of a sheet sample simultaneously through the reflection of the two mirrors.The results on the two surfaces are then transformed into the same coordinate system,leading to the required dual-surface 3D dynamical deformation fields.The effectiveness and accuracy of the established system are validated through modal tests of a cantilever aluminum sheet.The vibration measurement of a drum and dual-surface transient deformation measurement of a smartphone in the drop-collision process further prove its practicability.Benefiting from the attractive advantages of multi-view dynamic deformation measurement in a cost-efficient way,the established mirror-assisted MVHS-DIC is expected to encourage more comprehensive dynamic mechanical behavior characterization of regular-sized materials and structures in vibration and impact engineering fields.展开更多
Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class curren...Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11925202 and 11872009)National Science and Technology Major Project(Grant No.J2019-V-0006-0099)。
文摘Based on the recently proposed mirror-assisted multi-view digital image correlation(MV-DIC),we establish a cost-effective and easy-to-implement mirror-assisted multi-view high-speed digital image correlation(MVHS-DIC)method and explore its applications for dual-surface full-field dynamic deformation measurement.In contrast to the general requirement of four expensive high-speed cameras for dual-surface dynamic deformation field measurement,the established mirror-assisted MVHS-DIC halves the cost by involving only two synchronized high-speed cameras and two planar mirrors.The two synchronized high-speed cameras can dynamically measure the front and rear surfaces of a sheet sample simultaneously through the reflection of the two mirrors.The results on the two surfaces are then transformed into the same coordinate system,leading to the required dual-surface 3D dynamical deformation fields.The effectiveness and accuracy of the established system are validated through modal tests of a cantilever aluminum sheet.The vibration measurement of a drum and dual-surface transient deformation measurement of a smartphone in the drop-collision process further prove its practicability.Benefiting from the attractive advantages of multi-view dynamic deformation measurement in a cost-efficient way,the established mirror-assisted MVHS-DIC is expected to encourage more comprehensive dynamic mechanical behavior characterization of regular-sized materials and structures in vibration and impact engineering fields.
文摘Various technologies have recently been developed for high-speed railways, in order to boost commercial speeds from 300 km.h: to 400 km.h-1. Among these technologies, this paper introduces the 400 km-h-1 class current collection performance evaluation methods that have been developed and demonstrated by Korea. Specifically, this paper reports details of the video-based monitoring techniques that have been adopted to inspect the stability of overhead contact line (OCL) components at 400 km.h-1 without direct contact with any components of the power supply system. Unlike conventional OCL monitoring systems, which detect contact wire positions using either laser sensors or line cameras, the developed system measures parameters in the active state by video data. According to experimental results that were obtained at a field-test site established at a commercial line, it is claimed that the proposed mea- surement system is capable of effectively measuring OCL parameters.