The authors processed the seismic refraction Pg-wave travel time data with finite difference tomography method and revealed velocity structure of the upper crust on active block boundaries and deep features of the act...The authors processed the seismic refraction Pg-wave travel time data with finite difference tomography method and revealed velocity structure of the upper crust on active block boundaries and deep features of the active faults in western Sichuan Province. The following are the results of our investigation. The upper crust of Yanyuan basin and the Houlong Mountains consists of the superficial low-velocity layer and the deep uniform high-velocity layer, and between the two layers, there is a distinct, and gently west-dipping structural plane. Between model coordinates 180-240 km, P-wave velocity distribution features steeply inclined strip-like structure with strongly non-uniform high and low velocities alternately. Xichang Mesozoic basin between 240 and 300 km consists of a thick low-velocity upper layer and a high-velocity lower layer, where lateral and vertical velocity variations are very strong and the interface between the two layers fluctuates a lot. The Daliang Mountains to the east of the 300 km coordinate is a non-uniform high-velocity zone, with a superficial velocity of approximately 5 km/s. From 130 to 150 km and from 280 to 310 km, there are extremely distinct deep anomalous high-velocity bodies, which are supposed to be related with Permian magmatic activity. The Yanyuan nappe structure is composed of the superficial low-velocity nappe, the gently west-dipping detachment surface and the deep high-velocity basement, with Jinhe-Qinghe fault zone as the nappe front. Mopanshan fault is a west-dipping low-velocity zone, which extends to the top surface of the basement. Anninghe fault and Zemuhe fault are east-dipping, tabular-like, and low-velocity zones, which extend deep into the base-ment. At a great depth, Daliangshan fault separates into two segments, which are represented by drastic variation of velocity structures in a narrow strip: the west segment dips westward and the east segment dips eastward, both stretching into the basement. The east margin fault of Xichang Mesozoic basin features a strong展开更多
The Fuzhou basin and its vicinities are located at the northern end of the southeastern coastal seismic zone of the mainland of China. By the joint explorations of high-resolution seismic refraction and wide-angle ref...The Fuzhou basin and its vicinities are located at the northern end of the southeastern coastal seismic zone of the mainland of China. By the joint explorations of high-resolution seismic refraction and wide-angle reflection/refraction as well as deep seismic reflection in the region, which is the first synthetic profile in China, its fine velocity structure and geometric structure from the ground to Moho discontinuity is obtained. The result shows that the crust is obviously layered with a thickness of about 32 km. Basically, it consists of two parts: upper crust and lower crust. The velocity of the upper crust is 5.9-6.2 km/s in which there is a 3-4-km-thick weak low-velocity layer between the depths of 10-15 km, while the velocity of the lower crust in the range of 6.3-7.2 km/s. There exists a strong velocity gradient layer about 3 km thick above the Moho discontinuity whose velocity increases from 6.5 to 7.27 km/s. There exist high-angle normal faults that are small in size and extend only in the shallow crust. These faults are the secondary developed on the hanging wall of westward dipping low-angle normal faults. Thus, their seismogenic ability is limited, however, there exists a high-angle deep fault in the crust from Changle-Zaoan fault zone to seashore fault zone. This deep fault has cut the interface between the upper and lower crusts and Moho discontinuity, and may be the deep structure to trigger destructive earthquake source in future to affect Fuzhou City. These results have advanced the detecting precision of the deep structure in the southeastern coastal seismic zone of the mainland of China. In the aspect of the combined feature of the deep and shallow extensional structures that consist of the westward dipping low-angle normal faults and secondary normal faults on their hanging walls in the upper crust, it is firstly obtained that a united structural interpretation has deepened the knowledge about the deep dynamic process in the southeastern coastal seismic zone. At the same time, in synthetic a展开更多
基金the National Basic Research Program of China (Grant No. 2004CB428400)
文摘The authors processed the seismic refraction Pg-wave travel time data with finite difference tomography method and revealed velocity structure of the upper crust on active block boundaries and deep features of the active faults in western Sichuan Province. The following are the results of our investigation. The upper crust of Yanyuan basin and the Houlong Mountains consists of the superficial low-velocity layer and the deep uniform high-velocity layer, and between the two layers, there is a distinct, and gently west-dipping structural plane. Between model coordinates 180-240 km, P-wave velocity distribution features steeply inclined strip-like structure with strongly non-uniform high and low velocities alternately. Xichang Mesozoic basin between 240 and 300 km consists of a thick low-velocity upper layer and a high-velocity lower layer, where lateral and vertical velocity variations are very strong and the interface between the two layers fluctuates a lot. The Daliang Mountains to the east of the 300 km coordinate is a non-uniform high-velocity zone, with a superficial velocity of approximately 5 km/s. From 130 to 150 km and from 280 to 310 km, there are extremely distinct deep anomalous high-velocity bodies, which are supposed to be related with Permian magmatic activity. The Yanyuan nappe structure is composed of the superficial low-velocity nappe, the gently west-dipping detachment surface and the deep high-velocity basement, with Jinhe-Qinghe fault zone as the nappe front. Mopanshan fault is a west-dipping low-velocity zone, which extends to the top surface of the basement. Anninghe fault and Zemuhe fault are east-dipping, tabular-like, and low-velocity zones, which extend deep into the base-ment. At a great depth, Daliangshan fault separates into two segments, which are represented by drastic variation of velocity structures in a narrow strip: the west segment dips westward and the east segment dips eastward, both stretching into the basement. The east margin fault of Xichang Mesozoic basin features a strong
文摘The Fuzhou basin and its vicinities are located at the northern end of the southeastern coastal seismic zone of the mainland of China. By the joint explorations of high-resolution seismic refraction and wide-angle reflection/refraction as well as deep seismic reflection in the region, which is the first synthetic profile in China, its fine velocity structure and geometric structure from the ground to Moho discontinuity is obtained. The result shows that the crust is obviously layered with a thickness of about 32 km. Basically, it consists of two parts: upper crust and lower crust. The velocity of the upper crust is 5.9-6.2 km/s in which there is a 3-4-km-thick weak low-velocity layer between the depths of 10-15 km, while the velocity of the lower crust in the range of 6.3-7.2 km/s. There exists a strong velocity gradient layer about 3 km thick above the Moho discontinuity whose velocity increases from 6.5 to 7.27 km/s. There exist high-angle normal faults that are small in size and extend only in the shallow crust. These faults are the secondary developed on the hanging wall of westward dipping low-angle normal faults. Thus, their seismogenic ability is limited, however, there exists a high-angle deep fault in the crust from Changle-Zaoan fault zone to seashore fault zone. This deep fault has cut the interface between the upper and lower crusts and Moho discontinuity, and may be the deep structure to trigger destructive earthquake source in future to affect Fuzhou City. These results have advanced the detecting precision of the deep structure in the southeastern coastal seismic zone of the mainland of China. In the aspect of the combined feature of the deep and shallow extensional structures that consist of the westward dipping low-angle normal faults and secondary normal faults on their hanging walls in the upper crust, it is firstly obtained that a united structural interpretation has deepened the knowledge about the deep dynamic process in the southeastern coastal seismic zone. At the same time, in synthetic a