The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT pro...The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.展开更多
Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT),respectively.The effects of temperature on grain refinement and microhardness ...Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT),respectively.The effects of temperature on grain refinement and microhardness variation were investigated.For the samples after HPT processing at RT,the grain size reduced from 43 μm to 265 nm,and the Vickers microhardness increased from HV52 to HV140.However,for the samples after HPT processing at LNT,the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region.Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample,but further deformation induced an inhomogeneous distribution of grain sizes,with submicrometer-sized grains embedded inside micrometer-sized grains.The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature.On the contrary,the micrometer-sized grains were nearly free of dislocation,without obvious deformation trace remaining in them.These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.展开更多
文摘The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.
基金supported by the National Natural Science Foundation of China (Grant Nos.10721202,10772178,50571110)
文摘Cu samples were subjected to high-pressure torsion (HPT) with up to 6 turns at room temperature (RT) and liquid nitrogen temperature (LNT),respectively.The effects of temperature on grain refinement and microhardness variation were investigated.For the samples after HPT processing at RT,the grain size reduced from 43 μm to 265 nm,and the Vickers microhardness increased from HV52 to HV140.However,for the samples after HPT processing at LNT,the value of microhardness reached its maximum of HV150 near the center of the sample and it decreased to HV80 at the periphery region.Microstructure observations revealed that HPT straining at LNT induced lamellar structures with thickness less than 100 nm appearing near the central region of the sample,but further deformation induced an inhomogeneous distribution of grain sizes,with submicrometer-sized grains embedded inside micrometer-sized grains.The submicrometer-sized grains with high dislocation density indicated their nonequilibrium nature.On the contrary,the micrometer-sized grains were nearly free of dislocation,without obvious deformation trace remaining in them.These images demonstrated that the appearance of micrometer-sized grains is the result of abnormal grain growth of the deformed fine grains.