In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she...In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.展开更多
The newly observed isomer and ground-state band in the odd-Z neutron-rich rare-earth nucleus 163 Eu are investigated by using the cranked shell model(CSM), with pairing treated by the particle-number conserving(PNC)me...The newly observed isomer and ground-state band in the odd-Z neutron-rich rare-earth nucleus 163 Eu are investigated by using the cranked shell model(CSM), with pairing treated by the particle-number conserving(PNC)method. This is the first time detailed theoretical investigations are performed of the observed 964(1) keV isomer and ground-state rotational band in 163 Eu. The experimental data are reproduced very well by the theoretical results. The configuration of the 964(1) keV isomer is assigned as the three-particle state 13^-/2(v7^+/2 [633]■v1^-/2[521]■π5^+/2[413]).More low-lying multi-particle states are predicted in 163 Eu. Due to its significant effect on the nuclear mean field, the high-order ε6 deformation plays an important role in the energy and configuration assignment of the multi-particle states. Compared to its neighboring even-even nuclei 162 Sm and 164 Gd,there is a 10%15% increase of J(1) of the oneparticle ground-state band in 163 Eu. This is explained by the pairing reduction due to the blocking of the nucleon on the proton π5+/2 [413] orbital in 163 Eu.展开更多
For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of severa...For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of several meshless methods,which are more flexible and equally accurate numerical methods.The meshless method used in this work is the natural neighbour radial point interpolation method(NNRPIM).In order to discretize the problem domain,the NNRPIM only requires an unstructured nodal distribution.Then,using the Voronoi mathematical concept,it enforces the nodal connectivity and constructs the background integration mesh.The NNRPIM shape functions are constructed using the radial point interpolation technique.In this work,the displacement field of composite laminated plates is defined by high-order shear deformation theories.In the end,several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature.The obtained results show the efficiency and accuracy of the NNRPIM formulation.展开更多
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金the Iranian Nanotechnology Development Committee for their financial supportthe University of Kashan for supporting this work (No. 891238/11)。
文摘In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.
基金Supported by National Natural Science Foundation of China(11775112)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The newly observed isomer and ground-state band in the odd-Z neutron-rich rare-earth nucleus 163 Eu are investigated by using the cranked shell model(CSM), with pairing treated by the particle-number conserving(PNC)method. This is the first time detailed theoretical investigations are performed of the observed 964(1) keV isomer and ground-state rotational band in 163 Eu. The experimental data are reproduced very well by the theoretical results. The configuration of the 964(1) keV isomer is assigned as the three-particle state 13^-/2(v7^+/2 [633]■v1^-/2[521]■π5^+/2[413]).More low-lying multi-particle states are predicted in 163 Eu. Due to its significant effect on the nuclear mean field, the high-order ε6 deformation plays an important role in the energy and configuration assignment of the multi-particle states. Compared to its neighboring even-even nuclei 162 Sm and 164 Gd,there is a 10%15% increase of J(1) of the oneparticle ground-state band in 163 Eu. This is explained by the pairing reduction due to the blocking of the nucleon on the proton π5+/2 [413] orbital in 163 Eu.
文摘For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of several meshless methods,which are more flexible and equally accurate numerical methods.The meshless method used in this work is the natural neighbour radial point interpolation method(NNRPIM).In order to discretize the problem domain,the NNRPIM only requires an unstructured nodal distribution.Then,using the Voronoi mathematical concept,it enforces the nodal connectivity and constructs the background integration mesh.The NNRPIM shape functions are constructed using the radial point interpolation technique.In this work,the displacement field of composite laminated plates is defined by high-order shear deformation theories.In the end,several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature.The obtained results show the efficiency and accuracy of the NNRPIM formulation.