With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments(PHELIX)and the Petawatt ENergy-Efficient Laser for Optical Plasma Experi...We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments(PHELIX)and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments(PEnELOPE)facilities.This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality.Its implementation at PHELIX allowed one to bypass the front-end amplifier,which is known to be a source of pre-pulses.With the bypass,an amplified spontaneous emission contrast of 4.9×10^(−13)and a pre-pulse contrast of 6.2×10^(−11)could be realized.Due to its high stability,high beam quality and its versatile pump amplifier,the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.展开更多
The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states.The timing fluctuation of the laser pulses is crucial for pump–probe experime...The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states.The timing fluctuation of the laser pulses is crucial for pump–probe experiments,which is one of the vital means to observe the ultrafast dynamics driven by intense laser pulses.In this paper,we demonstrate the timing fluctuation characterization and control of the front end of a 100-PW laser that is composed of a high-contrast optical parametric amplifier(seed)and a 200-TW optical parametric chirped pulse amplifier(preamplifier).By combining the timing jitter measurement with a feedback system,the laser seed and preamplifier are synchronized to the reference with timing fluctuations of 1.82 and 4.48 fs,respectively.The timing system will be a key prerequisite for the stable operation of 100-PW laser facilities and provide the basis for potential pump–probe experiments performed on the laser.展开更多
Photobiomodulation(PBM)therapy is a therapeutic method that can produce a range of physiological effects in cells and tissues using certain wavelengths.The reparative benefits of PBM therapy include wound healing,bone...Photobiomodulation(PBM)therapy is a therapeutic method that can produce a range of physiological effects in cells and tissues using certain wavelengths.The reparative benefits of PBM therapy include wound healing,bone regeneration,pain reduction,and the mitigation of inflammation.Advances in the development of laser instruments,including the use of high-intensity lasers in physiotherapy,have recently led to controllable photothermal and photomechanical treatments that enable therapeutic effects to be obtained without damaging tissue.The combination of PBM therapy with acupuncture may provide new perspectives for investigating the underlying therapeutic mechanisms of acupuncture and promote its widespread application.展开更多
A novel method of initiating nuclear fusion reactions in a full plasma environment was suggested, and a proof-of-concept experiment was carried out with the D +D → n+3He reaction. In this new approach, two plasma j...A novel method of initiating nuclear fusion reactions in a full plasma environment was suggested, and a proof-of-concept experiment was carried out with the D +D → n+3He reaction. In this new approach, two plasma jets generated by high-intensity lasers collide headon-head. The center-of-mass energy of the nuclei increases accordingly, and therefore, reaction products can be significantly enhanced, especially in the sub-Coulomb barrier ranges. As a result of the fusion reaction, up to - 7.6 ×105 neutrons had been observed. This new type of "plasma collider" could provide an innovative tool to study nuclear reactions under astrophysical conditions.展开更多
The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source.Indeed,the huge potential established on the target ...The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source.Indeed,the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m.This process,called target normal sheath acceleration,involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics.At the SPARC LAB Test Facility,the high-power laser FLAME is employed in experiments with solid targets,aiming to study possible correlations between ballistic fast electrons and accelerated protons.In detail,we have installed in the interaction chamber two different diagnostics,each one devoted to characterizing one beam.The first relies on electro-optic sampling,and it has been adopted to completely characterize the ultrafast electron components.On the other hand,a time-of-flight detector,based on chemical-vapour-deposited diamond,has allowed us to retrieve the proton energy spectrum.In this work,we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.展开更多
High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density...High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.展开更多
We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was de...We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users,including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.展开更多
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.
基金funding through the ATHENA project of the Helmholtz Association and through the Loewe program of the state of Hessefunded by the European Union via the Euratom Research and Training Programme (grant agreement No. 101052200–EUROfusion)the European Union’s Horizon 2020 research and innovation program under grant agreement No. 871124 Laserlab-Europe
文摘We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments(PHELIX)and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments(PEnELOPE)facilities.This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality.Its implementation at PHELIX allowed one to bypass the front-end amplifier,which is known to be a source of pre-pulses.With the bypass,an amplified spontaneous emission contrast of 4.9×10^(−13)and a pre-pulse contrast of 6.2×10^(−11)could be realized.Due to its high stability,high beam quality and its versatile pump amplifier,the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.
基金supported by the Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE) projectthe National Natural Science Foundation of China (62105346)+2 种基金the CAS Project for Young Scientists in Basic Research(YSBR-059)the 100 Talents Program of CASthe Basic Research Project of the Shanghai Science and Technology Innovation Action Plan (20JC1416000)
文摘The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states.The timing fluctuation of the laser pulses is crucial for pump–probe experiments,which is one of the vital means to observe the ultrafast dynamics driven by intense laser pulses.In this paper,we demonstrate the timing fluctuation characterization and control of the front end of a 100-PW laser that is composed of a high-contrast optical parametric amplifier(seed)and a 200-TW optical parametric chirped pulse amplifier(preamplifier).By combining the timing jitter measurement with a feedback system,the laser seed and preamplifier are synchronized to the reference with timing fluctuations of 1.82 and 4.48 fs,respectively.The timing system will be a key prerequisite for the stable operation of 100-PW laser facilities and provide the basis for potential pump–probe experiments performed on the laser.
基金financially supported by Beijing Municipal Administration of Hospitals Incubating Program,Code:PZ2021001。
文摘Photobiomodulation(PBM)therapy is a therapeutic method that can produce a range of physiological effects in cells and tissues using certain wavelengths.The reparative benefits of PBM therapy include wound healing,bone regeneration,pain reduction,and the mitigation of inflammation.Advances in the development of laser instruments,including the use of high-intensity lasers in physiotherapy,have recently led to controllable photothermal and photomechanical treatments that enable therapeutic effects to be obtained without damaging tissue.The combination of PBM therapy with acupuncture may provide new perspectives for investigating the underlying therapeutic mechanisms of acupuncture and promote its widespread application.
基金supported by the National Basic Research Program of China(2013CBA01501 and2013CB834401)the National Natural Science Foundation of China(11135012 and 11135005)+1 种基金the Doctoral Fund of Ministry of Education of China(20120073110065)Shanghai Municipal Science and Technology Commission(11DZ2260700)for the supports
文摘A novel method of initiating nuclear fusion reactions in a full plasma environment was suggested, and a proof-of-concept experiment was carried out with the D +D → n+3He reaction. In this new approach, two plasma jets generated by high-intensity lasers collide headon-head. The center-of-mass energy of the nuclei increases accordingly, and therefore, reaction products can be significantly enhanced, especially in the sub-Coulomb barrier ranges. As a result of the fusion reaction, up to - 7.6 ×105 neutrons had been observed. This new type of "plasma collider" could provide an innovative tool to study nuclear reactions under astrophysical conditions.
文摘The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source.Indeed,the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m.This process,called target normal sheath acceleration,involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics.At the SPARC LAB Test Facility,the high-power laser FLAME is employed in experiments with solid targets,aiming to study possible correlations between ballistic fast electrons and accelerated protons.In detail,we have installed in the interaction chamber two different diagnostics,each one devoted to characterizing one beam.The first relies on electro-optic sampling,and it has been adopted to completely characterize the ultrafast electron components.On the other hand,a time-of-flight detector,based on chemical-vapour-deposited diamond,has allowed us to retrieve the proton energy spectrum.In this work,we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.
文摘High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.
基金The ILIL-PW upgrade was established in the framework of the Italian Research Network on Extreme Light Infrastructure(ELI-Italy)funded by CNRfinancial contribution from the Eu PRAXIA project of the EU Horizon 2020 Research and Innovation Program under Grant Agreement No.653782the Line for Laser Light Ion Acceleration(L3IA)project funded by INFN,Italy。
文摘We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users,including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.