Landslides are recurrent geological phenomena on Earth that cause heavy casualties and property losses annually.In this study,we use the V_(p)-k stacking and nonlinear waveform inversion methods of high-frequency rece...Landslides are recurrent geological phenomena on Earth that cause heavy casualties and property losses annually.In this study,we use the V_(p)-k stacking and nonlinear waveform inversion methods of high-frequency receiver functions extracted from local earthquakes,to sequentially invert Poisson’s ratios and S-wave velocities of the Quaternary Xishancun landslide,which is composed of three segments,i.e.,h1,h2,and h3 from bottom to top.Our results show that Poisson’s ratio values are generally higher than 0.33 and that the S-wave velocities vary from 0.1 to 0.9 km s^(-1).High Poisson’s ratios(>0.44)are mainly distributed in the juncture regions between different segments,as well as the western edge of h2.These zones show significant variation in landslide thickness and are potentially hazardous areas.Low velocities of 0.05–0.2 km s^(-1)with thicknesses of 10–30m are widely observed in the lower layer of the landslide.The high Poisson’s ratios and low-velocity layer may be related to water-rich materials in these areas.Our study suggests that the high-frequency receiver functions from local earthquakes can be used to delineate geotechnical structures,which is valuable for landslide stability analysis and hazard mitigation.展开更多
基金supported by the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant Nos.41604056,41661164035)。
文摘Landslides are recurrent geological phenomena on Earth that cause heavy casualties and property losses annually.In this study,we use the V_(p)-k stacking and nonlinear waveform inversion methods of high-frequency receiver functions extracted from local earthquakes,to sequentially invert Poisson’s ratios and S-wave velocities of the Quaternary Xishancun landslide,which is composed of three segments,i.e.,h1,h2,and h3 from bottom to top.Our results show that Poisson’s ratio values are generally higher than 0.33 and that the S-wave velocities vary from 0.1 to 0.9 km s^(-1).High Poisson’s ratios(>0.44)are mainly distributed in the juncture regions between different segments,as well as the western edge of h2.These zones show significant variation in landslide thickness and are potentially hazardous areas.Low velocities of 0.05–0.2 km s^(-1)with thicknesses of 10–30m are widely observed in the lower layer of the landslide.The high Poisson’s ratios and low-velocity layer may be related to water-rich materials in these areas.Our study suggests that the high-frequency receiver functions from local earthquakes can be used to delineate geotechnical structures,which is valuable for landslide stability analysis and hazard mitigation.