为准确分析模块化多电平换流器(modular multilevel converter,MMC)输电系统高频振荡现象,基于谐波状态空间(harmonic state space,HSS)理论,综合考虑MMC装备内部动态特性建立了二阶截断下系统的HSS模型,结合该模型计算得系统特征根分布...为准确分析模块化多电平换流器(modular multilevel converter,MMC)输电系统高频振荡现象,基于谐波状态空间(harmonic state space,HSS)理论,综合考虑MMC装备内部动态特性建立了二阶截断下系统的HSS模型,结合该模型计算得系统特征根分布,进而判定系统稳定性及对振荡频率进行预测。基于以上建模分析过程探究了交流网络、系统长链路延时及控制器参数对系统高频稳定性的作用规律。得出系统高频振荡由MMC装备及交流网络相互作用引起,系统高频稳定性随交流线路电阻及对地电容参数增大而提升,且系统长链路延时是引发高频振荡的主要因素,控制器部分,合理参数范围内,基频电流环参数对系统高频稳定性有显著影响,系统发生高频振荡风险随其控制带宽增大而提升,功率外环及锁相环参数对系统高频稳定性影响极小,环流抑制环参数对系统高频稳定性几乎无影响,可从优化交流网络特性、减小系统延时和围绕基频电流环附加控制环节等角度提出高频振荡抑制措施。以上分析结论通过MATLAB/Simulink时域仿真得到验证。展开更多
文摘为准确分析模块化多电平换流器(modular multilevel converter,MMC)输电系统高频振荡现象,基于谐波状态空间(harmonic state space,HSS)理论,综合考虑MMC装备内部动态特性建立了二阶截断下系统的HSS模型,结合该模型计算得系统特征根分布,进而判定系统稳定性及对振荡频率进行预测。基于以上建模分析过程探究了交流网络、系统长链路延时及控制器参数对系统高频稳定性的作用规律。得出系统高频振荡由MMC装备及交流网络相互作用引起,系统高频稳定性随交流线路电阻及对地电容参数增大而提升,且系统长链路延时是引发高频振荡的主要因素,控制器部分,合理参数范围内,基频电流环参数对系统高频稳定性有显著影响,系统发生高频振荡风险随其控制带宽增大而提升,功率外环及锁相环参数对系统高频稳定性影响极小,环流抑制环参数对系统高频稳定性几乎无影响,可从优化交流网络特性、减小系统延时和围绕基频电流环附加控制环节等角度提出高频振荡抑制措施。以上分析结论通过MATLAB/Simulink时域仿真得到验证。