The development of laser performance models having real-time prediction capability for the OMEGA EP laser system has been essential in meeting requests from its user community for increasingly complex pulse shapes tha...The development of laser performance models having real-time prediction capability for the OMEGA EP laser system has been essential in meeting requests from its user community for increasingly complex pulse shapes that span a wide range of energies. The laser operations model PSOPS provides rapid and accurate predictions of OMEGA EP lasersystem performance in both forward and backward directions, a user-friendly interface and rapid optimization capability between shots. We describe the model’s features and show how PSOPS has allowed real-time optimization of the lasersystem configuration in order to satisfy the demands of rapidly evolving experimental campaign needs. We also discuss several enhancements to laser-system performance accuracy and flexibility enabled by PSOPS.展开更多
In this work,a high-energy and high peak power chirped pulse amplifcation system with near difraction-limited beam quality based on tapered confned-doped fber(TCF)is experimentally demonstrated.The TCF has a core nume...In this work,a high-energy and high peak power chirped pulse amplifcation system with near difraction-limited beam quality based on tapered confned-doped fber(TCF)is experimentally demonstrated.The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250µm at the thin end and 56/400μm at the thick end.With a backward-pumping confguration,a maximum single pulse energy of 177.9μJ at a repetition rate of 504 kHz is realized,corresponding to an average power of 89.7 W.Through partially compensating for the accumulated nonlinear phase during the amplifcation process via adjusting the high order dispersion of the stretching chirped fber Bragg grating,the duration of the amplifed pulse is compressed to 401 fs with a pulse energy of 126.3μJ and a peak power of 207 MW,which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fber laser.At the highest energy,the polarization extinction ratio and the M2 factor were respectively measured to be~19 dB and 1.20.In addition,the corresponding intensity noise properties as well as the short-and long-term stability were also examined,verifying a stable operation of the system.It is believed that the demonstrated laser source could fnd important applications in,for example,advanced manufacturing and photomedicine.展开更多
kHz、窄脉宽、高能量的脉冲激光光源在激光测距领域具有广阔的应用前景。依据晶体电光调Q与窄脉宽理论,研究并设计了一种kHz、窄脉宽、高能量调Q的固体激光器。实验采用了一种适用于高占空比、高功率的LD端面泵浦构型,利用三柱透镜耦合...kHz、窄脉宽、高能量的脉冲激光光源在激光测距领域具有广阔的应用前景。依据晶体电光调Q与窄脉宽理论,研究并设计了一种kHz、窄脉宽、高能量调Q的固体激光器。实验采用了一种适用于高占空比、高功率的LD端面泵浦构型,利用三柱透镜耦合系统将泵浦光聚焦至工作物质内,其最大光转化效率能达到27%;分别利用RTP晶体与KD~*P晶体进行高重频电光调Q对比,在近乎相同的静态输入下,KD~*P晶体调Q获得了11 m J的动态能量输出,RTP晶体的动态能量只有5.64 m J。最佳泵浦功率下,KD~*P晶体的动静比接近80%,RTP晶体动静比接近40%。最后,通过改变谐振腔的腔长,验证了短腔法实现窄脉宽激光的可行性,并在物理腔长为60 mm的情况下,获得了5.76 ns的窄脉宽激光。展开更多
A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3 coating was obtained by...A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3 coating was obtained by this method, which had excellent adhesion with substrate, smooth surface and good resistance to high temperature oxidation.展开更多
We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
The generation of high-energy dual-wavelength domain wall pulse with a low repetition rate is demonstrated in a highly nonlinear fiber (HNLF)-based fiber ring laser. By introducing the intracavity birefringence-indu...The generation of high-energy dual-wavelength domain wall pulse with a low repetition rate is demonstrated in a highly nonlinear fiber (HNLF)-based fiber ring laser. By introducing the intracavity birefringence-induced spectral filtering effect, the dual-wavelength lasing operation can be achieved. In order to enhance the cross coupling effect between the two lasing beams for domain wall pulse formation, a 215-m HNLF is incorporated into the laser cavity. Experimentally, it is found that the dual-wavelength domain wall pulse with a repetition rate of 77.67 kHz could be efficiently obtained through simply rotating the polarization controller (PC). At a maximum pump power of 322 mW, the 655-nJ single pulse energy in cavity is obtained. The proposed configuration provides a simpler and more efficient way to generate high energy pulse with a low repetition rate.展开更多
To study the molecular mechanism of high mutation frequency induced by high-energy-pulse-electron (HEPE) beam radiation, the effects of HEPE radiation on yeast cells, plasma membrane, plasmid DNA, and protein activity...To study the molecular mechanism of high mutation frequency induced by high-energy-pulse-electron (HEPE) beam radiation, the effects of HEPE radiation on yeast cells, plasma membrane, plasmid DNA, and protein activity were investigated by means of cell counting, gel electrophoresis, AO/EB double fluorescent staining, etc. The results showed that the viability of yeast cells declined statistically with increase of absorbed doses. The half lethal dose (LD50) was 134 Gy. HEPE beam radiation had little influence on the function of plasma membrane and protein, while it could induce much DNA damage of single strand breaks (SSB) and double strand breaks (DSB) that were required for gene mutation. The G-value for DSB formation of HEPE beam radiation in aqueous solution was 5.7 times higher than that caused by 60Co gamma rays. HEPE can be a new effective method for induced mutation breeding and deserves further research in the future.展开更多
基金based on work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003856the University of Rochesterthe New York State Energy Research and Development Authority。
文摘The development of laser performance models having real-time prediction capability for the OMEGA EP laser system has been essential in meeting requests from its user community for increasingly complex pulse shapes that span a wide range of energies. The laser operations model PSOPS provides rapid and accurate predictions of OMEGA EP lasersystem performance in both forward and backward directions, a user-friendly interface and rapid optimization capability between shots. We describe the model’s features and show how PSOPS has allowed real-time optimization of the lasersystem configuration in order to satisfy the demands of rapidly evolving experimental campaign needs. We also discuss several enhancements to laser-system performance accuracy and flexibility enabled by PSOPS.
基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02)the Postgraduate Scientifc Research Innovation Project of Hunan Province(No.QL20220007).
文摘In this work,a high-energy and high peak power chirped pulse amplifcation system with near difraction-limited beam quality based on tapered confned-doped fber(TCF)is experimentally demonstrated.The TCF has a core numerical aperture of 0.07 with core/cladding diameter of 35/250µm at the thin end and 56/400μm at the thick end.With a backward-pumping confguration,a maximum single pulse energy of 177.9μJ at a repetition rate of 504 kHz is realized,corresponding to an average power of 89.7 W.Through partially compensating for the accumulated nonlinear phase during the amplifcation process via adjusting the high order dispersion of the stretching chirped fber Bragg grating,the duration of the amplifed pulse is compressed to 401 fs with a pulse energy of 126.3μJ and a peak power of 207 MW,which to the best of our knowledge represents the highest peak power ever reported from a monolithic ultrafast fber laser.At the highest energy,the polarization extinction ratio and the M2 factor were respectively measured to be~19 dB and 1.20.In addition,the corresponding intensity noise properties as well as the short-and long-term stability were also examined,verifying a stable operation of the system.It is believed that the demonstrated laser source could fnd important applications in,for example,advanced manufacturing and photomedicine.
文摘kHz、窄脉宽、高能量的脉冲激光光源在激光测距领域具有广阔的应用前景。依据晶体电光调Q与窄脉宽理论,研究并设计了一种kHz、窄脉宽、高能量调Q的固体激光器。实验采用了一种适用于高占空比、高功率的LD端面泵浦构型,利用三柱透镜耦合系统将泵浦光聚焦至工作物质内,其最大光转化效率能达到27%;分别利用RTP晶体与KD~*P晶体进行高重频电光调Q对比,在近乎相同的静态输入下,KD~*P晶体调Q获得了11 m J的动态能量输出,RTP晶体的动态能量只有5.64 m J。最佳泵浦功率下,KD~*P晶体的动静比接近80%,RTP晶体动静比接近40%。最后,通过改变谐振腔的腔长,验证了短腔法实现窄脉宽激光的可行性,并在物理腔长为60 mm的情况下,获得了5.76 ns的窄脉宽激光。
文摘A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3 coating was obtained by this method, which had excellent adhesion with substrate, smooth surface and good resistance to high temperature oxidation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074078,61378036,61307058,11304101,and 61177077)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)the Ph.D.Start-up Fund of the Natural Science Foundation of Guangdong Province,China(Grant No.S2013040016320)
文摘The generation of high-energy dual-wavelength domain wall pulse with a low repetition rate is demonstrated in a highly nonlinear fiber (HNLF)-based fiber ring laser. By introducing the intracavity birefringence-induced spectral filtering effect, the dual-wavelength lasing operation can be achieved. In order to enhance the cross coupling effect between the two lasing beams for domain wall pulse formation, a 215-m HNLF is incorporated into the laser cavity. Experimentally, it is found that the dual-wavelength domain wall pulse with a repetition rate of 77.67 kHz could be efficiently obtained through simply rotating the polarization controller (PC). At a maximum pump power of 322 mW, the 655-nJ single pulse energy in cavity is obtained. The proposed configuration provides a simpler and more efficient way to generate high energy pulse with a low repetition rate.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 30570376 and 50673078)the Shanghai Key Fundamental Project (Grant No. 06JC14068)the Innovation Program of Shanghai Municipal Education Commis-sion (Grant No. 08ZZ21)
文摘To study the molecular mechanism of high mutation frequency induced by high-energy-pulse-electron (HEPE) beam radiation, the effects of HEPE radiation on yeast cells, plasma membrane, plasmid DNA, and protein activity were investigated by means of cell counting, gel electrophoresis, AO/EB double fluorescent staining, etc. The results showed that the viability of yeast cells declined statistically with increase of absorbed doses. The half lethal dose (LD50) was 134 Gy. HEPE beam radiation had little influence on the function of plasma membrane and protein, while it could induce much DNA damage of single strand breaks (SSB) and double strand breaks (DSB) that were required for gene mutation. The G-value for DSB formation of HEPE beam radiation in aqueous solution was 5.7 times higher than that caused by 60Co gamma rays. HEPE can be a new effective method for induced mutation breeding and deserves further research in the future.