期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于递归分解的因果结构学习算法
1
作者
蔡瑞初
张文辉
+1 位作者
乔杰
郝志峰
《计算机工程》
CAS
CSCD
北大核心
2023年第3期87-94,共8页
在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结...
在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结合递归分解的思想,将高维变量集递归分解为多个更小的子集,直到无法再分解或子集的大小达到阈值为止。在该过程中,变量集的减少缩减了条件独立性检验的条件候选集的搜索空间,从而提高学习效率。同时,为进一步识别马尔可夫等价类,根据非线性非高斯模型的因果方向的不可逆性,通过判断拟合噪声项与原因变量是否独立来识别马尔可夫等价类的因果方向。在仿真数据和真实因果结构数据上的实验结果表明,CADR不仅提高条件独立性检验的效率,而且能有效地区分马尔可夫等价类,学习到更精确的因果结构,其中,在真实因果结构实验中,与现有Xie_rec、PC_ANM和Notear_Sob方法相比,F1评分提高5%~12%。
展开更多
关键词
因果关系发现
条件独立性检验
高维小样本
递归分解
马尔可夫等价类
下载PDF
职称材料
分类先验特征选择算法在代谢组学数据变量筛选中的应用
被引量:
1
2
作者
王娅妮
杜丽晶
+1 位作者
郭拓
肖雪
《分析测试学报》
CAS
CSCD
北大核心
2023年第4期423-431,共9页
该文提出了基于无监督判别投影特征选择的支持向量机方法(UDPFS-SVM)用于标志物筛选。UDPFS-SVM首先通过无监督判别投影算法(UDPFS)引入分类先验信息、添加正则化与惩罚函数等约束自适应地获得具有稀疏性的判别投影矩阵,然后根据获得的...
该文提出了基于无监督判别投影特征选择的支持向量机方法(UDPFS-SVM)用于标志物筛选。UDPFS-SVM首先通过无监督判别投影算法(UDPFS)引入分类先验信息、添加正则化与惩罚函数等约束自适应地获得具有稀疏性的判别投影矩阵,然后根据获得的矩阵求得相应低维代谢矩阵,最后建立支持向量机(SVM)分类模型寻找生物标志物。所提出的方法能够同时进行模糊学习与稀疏学习,并可合理利用变量之间的依赖关系。通过UDPFS-SVM与偏最小二乘判别分析(PLS-DA)方法对高脂血症大鼠血浆代谢组学数据进行变量筛选,并采用方差分析、ROC曲线、线性判别分析(LDA)对筛选得到的生物标志物进行评价。结果表明,两种方法均发现8个生物标志物。方差分析显示UDPFS-SVM方法获得的生物标志物均具有显著性差异,且显著性差异值均大于PLS-DA;ROC结果显示UDPFS-SVM结果为1.00,比PLS-DA结果高0.05;LDA显示UDPFS-SVM获得的生物标志物在高脂血症样本中可以更好地消除组内代谢差异,区分组间代谢差异,说明UDPFS-SVM方法在高脂血症生物标志物发现上优于PLS-DA,为生物标志物的发现提供了一种新思路。
展开更多
关键词
变量筛选
无监督判别投影
分类先验信息
非线性
高维小样本
代谢组学
下载PDF
职称材料
题名
基于递归分解的因果结构学习算法
1
作者
蔡瑞初
张文辉
乔杰
郝志峰
机构
广东工业大学计算机学院
汕头大学理学院
出处
《计算机工程》
CAS
CSCD
北大核心
2023年第3期87-94,共8页
基金
国家优秀青年科学基金(6212200101)
国家自然科学基金(61876043,61976052)。
文摘
在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结合递归分解的思想,将高维变量集递归分解为多个更小的子集,直到无法再分解或子集的大小达到阈值为止。在该过程中,变量集的减少缩减了条件独立性检验的条件候选集的搜索空间,从而提高学习效率。同时,为进一步识别马尔可夫等价类,根据非线性非高斯模型的因果方向的不可逆性,通过判断拟合噪声项与原因变量是否独立来识别马尔可夫等价类的因果方向。在仿真数据和真实因果结构数据上的实验结果表明,CADR不仅提高条件独立性检验的效率,而且能有效地区分马尔可夫等价类,学习到更精确的因果结构,其中,在真实因果结构实验中,与现有Xie_rec、PC_ANM和Notear_Sob方法相比,F1评分提高5%~12%。
关键词
因果关系发现
条件独立性检验
高维小样本
递归分解
马尔可夫等价类
Keywords
causal
relationship
discovery
conditional
independence
test
high
-
dimensional
small
samples
recursive
decomposition
Markov
equivalence
class
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
分类先验特征选择算法在代谢组学数据变量筛选中的应用
被引量:
1
2
作者
王娅妮
杜丽晶
郭拓
肖雪
机构
陕西科技大学电子信息与人工智能学院
上海交通大学药学院
广东药科大学中医药研究院
出处
《分析测试学报》
CAS
CSCD
北大核心
2023年第4期423-431,共9页
基金
陕西省教育厅科学研究计划项目(20JK0532)。
文摘
该文提出了基于无监督判别投影特征选择的支持向量机方法(UDPFS-SVM)用于标志物筛选。UDPFS-SVM首先通过无监督判别投影算法(UDPFS)引入分类先验信息、添加正则化与惩罚函数等约束自适应地获得具有稀疏性的判别投影矩阵,然后根据获得的矩阵求得相应低维代谢矩阵,最后建立支持向量机(SVM)分类模型寻找生物标志物。所提出的方法能够同时进行模糊学习与稀疏学习,并可合理利用变量之间的依赖关系。通过UDPFS-SVM与偏最小二乘判别分析(PLS-DA)方法对高脂血症大鼠血浆代谢组学数据进行变量筛选,并采用方差分析、ROC曲线、线性判别分析(LDA)对筛选得到的生物标志物进行评价。结果表明,两种方法均发现8个生物标志物。方差分析显示UDPFS-SVM方法获得的生物标志物均具有显著性差异,且显著性差异值均大于PLS-DA;ROC结果显示UDPFS-SVM结果为1.00,比PLS-DA结果高0.05;LDA显示UDPFS-SVM获得的生物标志物在高脂血症样本中可以更好地消除组内代谢差异,区分组间代谢差异,说明UDPFS-SVM方法在高脂血症生物标志物发现上优于PLS-DA,为生物标志物的发现提供了一种新思路。
关键词
变量筛选
无监督判别投影
分类先验信息
非线性
高维小样本
代谢组学
Keywords
variable
screening
unsupervised
discriminative
projection
classified
prior
informa⁃tion
non-linear
high
-
dimensional
and
small
samples
metabonomics
分类号
O615.45 [理学—无机化学]
TB9 [理学—化学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于递归分解的因果结构学习算法
蔡瑞初
张文辉
乔杰
郝志峰
《计算机工程》
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
2
分类先验特征选择算法在代谢组学数据变量筛选中的应用
王娅妮
杜丽晶
郭拓
肖雪
《分析测试学报》
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部