期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Alternating Direction Method of Multipliers for MCP-penalized Regression with High-dimensional Data 被引量:3
1
作者 Yue Yong SHI Yu Ling JIAO +1 位作者 Yong Xiu CAO Yan Yan LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第12期1892-1906,共15页
The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficie... The minimax concave penalty (MCP) has been demonstrated theoretically and practical- ly to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficient alternating direction method of multipliers (ADMM) with continuation algorithm for solving the MCP-penalized least squares problem in high dimensions. Under some mild conditions, we study the convergence properties and the Karush-Kuhn-Tucker (KKT) optimality con- ditions of the proposed method. A high-dimensional BIC is developed to select the optimal tuning parameters. Simulations and a real data example are presented to illustrate the efficiency and accuracy of the proposed method. 展开更多
关键词 Alternating direction method of multipliers coordinate descent CONTINUATION high-dimen-sional bic minimax concave penalty penalized least squares
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部