期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合运动状态信息的高速相关滤波跟踪算法 被引量:4
1
作者 韩锟 杨穷千 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期82-91,共10页
为解决相关滤波(Discriminative Correlation Filter,DCF)算法在快速运动、遮挡、尺度变化等复杂情景下的跟踪失败问题,提出一种融合运动状态信息的高速相关滤波目标跟踪算法.在传统DCF算法基础上做出以下改进:(1)在跟踪框架中融入卡尔... 为解决相关滤波(Discriminative Correlation Filter,DCF)算法在快速运动、遮挡、尺度变化等复杂情景下的跟踪失败问题,提出一种融合运动状态信息的高速相关滤波目标跟踪算法.在传统DCF算法基础上做出以下改进:(1)在跟踪框架中融入卡尔曼(Kalman)滤波器,利用目标运动状态信息对预测运动轨迹进行修正,以解决目标复杂运动时易跟丢问题,提高跟踪精度;(2)训练一个独立的尺度相关滤波器进行目标尺度预测,并利用主成分分析法(Principal Component Analysis,PCA)进行特征降维处理,提高跟踪速度;(3)提出一种高置信度更新策略判断是否对位置滤波器进行模板更新,以及是否采用Kalman滤波器预测位置作为目标位置.最后在OTB-100数据集上进行算法测试,提出算法平均精度与成功率分别达到74.8%与69.8%,平均帧率为84.37帧/s.相较其他几种主流算法,本文算法有效提高跟踪性能,并保证了跟踪速度,满足实时性要求,在遮挡、背景模糊、运动模糊等复杂情况下能够保持良好的跟踪效果. 展开更多
关键词 目标跟踪 相关滤波 卡尔曼滤波 尺度估计 高置信度更新
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部