It is promising for metal especially ferritic stainless steel(FSS)to be used as interconnector when the solid oxide fuel cell(SOFC)is operated at temperature lower than 800℃.However,there are many challenges for ...It is promising for metal especially ferritic stainless steel(FSS)to be used as interconnector when the solid oxide fuel cell(SOFC)is operated at temperature lower than 800℃.However,there are many challenges for FSS such as anti-oxidant,poisoning to cathode and high area specific resistance(ASR)when using as SOFC interconnector.The effect of Cr content(12-30 mass%)in Fe-Cr alloys on thermal expansion coefficient(TEC),oxidation resistance,microstructure of oxidation scale and ASR was investigated by thermo-gravimetry,scanning electron microscopy,energy dispersive spectroscopy and four-probe DC technique.The TEC of Fe-Cr alloys is(11-13)×10^(-6) K^(-1),which excellently matches with other SOFC components.Alloys have excellent oxidation resistance when Cr content exceeds 22mass% because of the formation of chromium on the surface of alloy.The oxidation rate constants kdand ksdecrease rapidly with increasing the Cr content and then increase slowly when the Cr content is higher than 22mass%.The kinetic results indicate that Cr evaporation must be considered at high temperature for Fe-Cr alloys.After the alloys were oxidized in air at 800℃ for500 h,log(ASR/T)(Tis the absolute temperature)presents linear relationship with 1/T and the conduct activation energy is 0.6-0.8eV(Cr16-30).Optimal Cr content is 22-26mass%considering the oxidation resistance and ASR.展开更多
The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthalocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst...The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthalocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst was produced. The Pt/C catalyst was characterized by SEM, TEM, Raman spectrum, EDS and XRD methods. Combining the carbonaceous paper spreaded up with the catalyst with Nafion membrane, we made MEA electrode. The discharge curves indicated that this carbon nanobeads supported Pt is a good fuel cell catalyst with excellent performance, high activity and sign of a long-time life.展开更多
基金funded by Ministry of Science and Technology of China(2012CB215405)Fundamental Research Funds for Central Universities of China(FRF-TP-15-052A3)Chinese Postdoctoral Science Foundation(2014M560046)
文摘It is promising for metal especially ferritic stainless steel(FSS)to be used as interconnector when the solid oxide fuel cell(SOFC)is operated at temperature lower than 800℃.However,there are many challenges for FSS such as anti-oxidant,poisoning to cathode and high area specific resistance(ASR)when using as SOFC interconnector.The effect of Cr content(12-30 mass%)in Fe-Cr alloys on thermal expansion coefficient(TEC),oxidation resistance,microstructure of oxidation scale and ASR was investigated by thermo-gravimetry,scanning electron microscopy,energy dispersive spectroscopy and four-probe DC technique.The TEC of Fe-Cr alloys is(11-13)×10^(-6) K^(-1),which excellently matches with other SOFC components.Alloys have excellent oxidation resistance when Cr content exceeds 22mass% because of the formation of chromium on the surface of alloy.The oxidation rate constants kdand ksdecrease rapidly with increasing the Cr content and then increase slowly when the Cr content is higher than 22mass%.The kinetic results indicate that Cr evaporation must be considered at high temperature for Fe-Cr alloys.After the alloys were oxidized in air at 800℃ for500 h,log(ASR/T)(Tis the absolute temperature)presents linear relationship with 1/T and the conduct activation energy is 0.6-0.8eV(Cr16-30).Optimal Cr content is 22-26mass%considering the oxidation resistance and ASR.
文摘The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthalocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst was produced. The Pt/C catalyst was characterized by SEM, TEM, Raman spectrum, EDS and XRD methods. Combining the carbonaceous paper spreaded up with the catalyst with Nafion membrane, we made MEA electrode. The discharge curves indicated that this carbon nanobeads supported Pt is a good fuel cell catalyst with excellent performance, high activity and sign of a long-time life.