Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r...Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.展开更多
Magnesium(Mg)alloys have received an increasing interest in the past two decades for their tremendous application potential.The strength and corrosion resistance levels of common Mg alloys are still relativity low,and...Magnesium(Mg)alloys have received an increasing interest in the past two decades for their tremendous application potential.The strength and corrosion resistance levels of common Mg alloys are still relativity low,and especially they are to be improved simultaneously.The addition of rare earth(RE)to Mg alloys is believed to be beneficial for both the strength and corrosion resistance,and some RE-modified traditional Mg alloys have been studied and some new RE-containing Mg alloys have been developed by now.However,further simultaneous improvements in both strength and anti-corrosion require a better understanding of the behavior and mechanism of RE in Mg alloys.In this review,the common influence mechanisms of RE on mechanical and anti-corrosion properties of Mg alloys are summarized,and the latest research progress of RE-containing Mg alloys with simultaneously improved strength and corrosion resistance are introduced.It is demonstrated that the research on high-strength and high corrosion resistant RE-containing Mg alloys is still immature,and some opinions and suggestions are put forward for the synergetic improvement of the strength and corrosion resistance of Mg alloys,so as to contribute to the further development of Mg alloys with higher performance.展开更多
基金supported by the National Basic Research Program of China (973 Program, 2015CB150401)the National Key Research and Development Program of China (2016YFD0300101)the National Maize Industrial Technology System, China
文摘Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.
基金This work was supported by National Natural Sci-ence Foundation of China(51871069)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)Science and technology innovation ma-jor project of Ningbo City(2019B10103).
文摘Magnesium(Mg)alloys have received an increasing interest in the past two decades for their tremendous application potential.The strength and corrosion resistance levels of common Mg alloys are still relativity low,and especially they are to be improved simultaneously.The addition of rare earth(RE)to Mg alloys is believed to be beneficial for both the strength and corrosion resistance,and some RE-modified traditional Mg alloys have been studied and some new RE-containing Mg alloys have been developed by now.However,further simultaneous improvements in both strength and anti-corrosion require a better understanding of the behavior and mechanism of RE in Mg alloys.In this review,the common influence mechanisms of RE on mechanical and anti-corrosion properties of Mg alloys are summarized,and the latest research progress of RE-containing Mg alloys with simultaneously improved strength and corrosion resistance are introduced.It is demonstrated that the research on high-strength and high corrosion resistant RE-containing Mg alloys is still immature,and some opinions and suggestions are put forward for the synergetic improvement of the strength and corrosion resistance of Mg alloys,so as to contribute to the further development of Mg alloys with higher performance.