Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse directi...Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse direction(TD)and normal direction(ND))were carried out at strain rates of 1000,2000 and 4000 s-1,respectively.From the microscopic point of view,the effect of strain rate and anisotropy on tension compression asymmetry of aviation aluminum alloy 7050 was studied by scanning electron microscope(SEM),metallographic microscope and electron backscatter diffraction(EBSD).The results showed that there was obvious asymmetry between tension and compression,especially that the yield strength of the material in tension was higher than that in compression.The asymmetry in the elastic stage of tension-compression was weaker and the asymmetry in the strengthening stage was stronger with the increase of strain rate.At the same strain rate,the changing trend of the flow stress was distinct under different orientations of tension and compression,which was related to the stress direction of the grains.According to EBSD grain orientation analysis and raw material texture pole figure analysis,it was found that the larger the difference in the degree of grain refinement during tension and compression,the larger the macro-flow stress difference.展开更多
Correlation of microstructure and intergranular stress corrosion cracking (IGSCC) susceptibility for the SA508-52M-316L dissimilar metal weld joint in primary water was investigated by the interrupted slow strain ra...Correlation of microstructure and intergranular stress corrosion cracking (IGSCC) susceptibility for the SA508-52M-316L dissimilar metal weld joint in primary water was investigated by the interrupted slow strain rate tension test following a microstructure characterization. The susceptibility to IGSCC in var- ious regions of the dissimilar metal weld joint was observed to follow the order of Alloy 52 Mb〉 the heat affected zone of 316L〉 the dilution zone of Alloy 52 Mw〉 Alloy 52 Mw weld metal. The chromium- depletion at the grain boundary is the dominant factor causing the high IGSCC susceptibility of Alloy 52 Mh. However, IGSCC initiation in the heat affected zone of 316L is attributed to the increase of resid- ual strain adjacent to the grain boundary. In addition, the decrease of chromium content and increase of residual strain adjacent to the grain boundary increase the IGSCC susceptibility of the dilution zone of Alloy 52 Mw.展开更多
基金supported by the Natural Science Foundation of China(No.51675230)the Major Innovation Projects in Shandong Province (No. 2019JZZY010451)。
文摘Using the devices of split Hopkinson tension bar(SHTB)and split Hopkinson pressure bar(SHPB),the dynamic tension and compression experiments in three typical forming directions(rolling direction(RD),transverse direction(TD)and normal direction(ND))were carried out at strain rates of 1000,2000 and 4000 s-1,respectively.From the microscopic point of view,the effect of strain rate and anisotropy on tension compression asymmetry of aviation aluminum alloy 7050 was studied by scanning electron microscope(SEM),metallographic microscope and electron backscatter diffraction(EBSD).The results showed that there was obvious asymmetry between tension and compression,especially that the yield strength of the material in tension was higher than that in compression.The asymmetry in the elastic stage of tension-compression was weaker and the asymmetry in the strengthening stage was stronger with the increase of strain rate.At the same strain rate,the changing trend of the flow stress was distinct under different orientations of tension and compression,which was related to the stress direction of the grains.According to EBSD grain orientation analysis and raw material texture pole figure analysis,it was found that the larger the difference in the degree of grain refinement during tension and compression,the larger the macro-flow stress difference.
基金supported by the National Natural Science Foundation of China(Grant No.51571204)
文摘Correlation of microstructure and intergranular stress corrosion cracking (IGSCC) susceptibility for the SA508-52M-316L dissimilar metal weld joint in primary water was investigated by the interrupted slow strain rate tension test following a microstructure characterization. The susceptibility to IGSCC in var- ious regions of the dissimilar metal weld joint was observed to follow the order of Alloy 52 Mb〉 the heat affected zone of 316L〉 the dilution zone of Alloy 52 Mw〉 Alloy 52 Mw weld metal. The chromium- depletion at the grain boundary is the dominant factor causing the high IGSCC susceptibility of Alloy 52 Mh. However, IGSCC initiation in the heat affected zone of 316L is attributed to the increase of resid- ual strain adjacent to the grain boundary. In addition, the decrease of chromium content and increase of residual strain adjacent to the grain boundary increase the IGSCC susceptibility of the dilution zone of Alloy 52 Mw.
基金The author would like to acknowledge financial support fromthe Office of Naval Research grant ONR-N0014-03-1-0351material supply from ALCOAProfessor H G Wadley of the University of Virginia