Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its appli...Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.展开更多
The nanometer Al2O3 dispersion strengthened NiCoCrAlY high-temperature protective coatings by crosscurrent CO2 laser on Ni-based superalloy GH4033 were produced. Microscopic morphologies, phase constitutions of claddi...The nanometer Al2O3 dispersion strengthened NiCoCrAlY high-temperature protective coatings by crosscurrent CO2 laser on Ni-based superalloy GH4033 were produced. Microscopic morphologies, phase constitutions of cladding coatings and distribution of nano-Al2O3 particles were examined using SEM and XRD. The results show that the interface grains, after adding proper nano-Al2O3, grow from epitaxial to non-epitaxial shape gradually, and the columnar dendrites become thinner and denser with cellular shape. Cracks in the substrate close to the interface are eliminated. Moreover, dispersive nano-Al2O3 particles mainly distribute around cellular substructure and on grain-boundaries, which prevents the diffusion of alloying elements and restrains the formation of new phase. There is a critical value of nano-Al2O3 addition, and the most suitable content of nano-Al2O3 is 1% (mass fraction) in this experimental conditions. The "nanometer effect" of nano-Al2O3 particles plays an important role in the improvement of coating microstructure.展开更多
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20060287019)Opening Research Fund of Jiangsu Provincial Key Laboratory of Tribology of China (Grant No. kjsmcx07001)Jiangsu Provincial Graduate Innovation Foundation of China (Grant No. CX08B-039Z)
文摘Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.
基金Project(20060287019) supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001) supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology, ChinaProject(CX08B-039Z) supported by the Graduate Innovation Foundation of Jiangsu Province, China
文摘The nanometer Al2O3 dispersion strengthened NiCoCrAlY high-temperature protective coatings by crosscurrent CO2 laser on Ni-based superalloy GH4033 were produced. Microscopic morphologies, phase constitutions of cladding coatings and distribution of nano-Al2O3 particles were examined using SEM and XRD. The results show that the interface grains, after adding proper nano-Al2O3, grow from epitaxial to non-epitaxial shape gradually, and the columnar dendrites become thinner and denser with cellular shape. Cracks in the substrate close to the interface are eliminated. Moreover, dispersive nano-Al2O3 particles mainly distribute around cellular substructure and on grain-boundaries, which prevents the diffusion of alloying elements and restrains the formation of new phase. There is a critical value of nano-Al2O3 addition, and the most suitable content of nano-Al2O3 is 1% (mass fraction) in this experimental conditions. The "nanometer effect" of nano-Al2O3 particles plays an important role in the improvement of coating microstructure.