It is widely accepted that helium(He) bubbles can prevent dislocations from moving and causing hardening and embrittlement of the material. However, He can affect the mechanical properties of materials in various ways...It is widely accepted that helium(He) bubbles can prevent dislocations from moving and causing hardening and embrittlement of the material. However, He can affect the mechanical properties of materials in various ways. In this work,ultrafine nanocrystal high entropy oxide(HEO) films with He implantation are prepared by using a radio frequency(RF)reactive magnetron sputtering system to investigate the effects of He bubbles located at grain boundary on the mechanical properties of the films. The mechanical properties of the HEO films are investigated systematically via nanoindentation measurements. The results indicate that the grain boundary cavities induced by He implantation can degrade the hardness,the elastic modulus, and the creep resistance of the HEO films. The mechanical properties of the HEO films are sensitive to the interaction between the He bubbles and the dominating defects.展开更多
基金中国博士后科学基金(2021M693125)大连市高层次人才创新支持计划(2019RT09)+1 种基金中国科学院洁净能源创新研究院合作基金(DNL202016,DNL202019)中国科学院洁净能源创新研究院-榆林学院联合基金(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775150 and 11505121)
文摘It is widely accepted that helium(He) bubbles can prevent dislocations from moving and causing hardening and embrittlement of the material. However, He can affect the mechanical properties of materials in various ways. In this work,ultrafine nanocrystal high entropy oxide(HEO) films with He implantation are prepared by using a radio frequency(RF)reactive magnetron sputtering system to investigate the effects of He bubbles located at grain boundary on the mechanical properties of the films. The mechanical properties of the HEO films are investigated systematically via nanoindentation measurements. The results indicate that the grain boundary cavities induced by He implantation can degrade the hardness,the elastic modulus, and the creep resistance of the HEO films. The mechanical properties of the HEO films are sensitive to the interaction between the He bubbles and the dominating defects.