寒冷地区居住建筑供暖能耗占建筑总能耗很大比例,降低供暖能耗是实现建筑节能的关键之一。以郑州地区高层住宅为例,从与供暖能耗密切相关的体形系数、外围护结构热工性能和气密性三方面进行了优化设计,并利用建筑能耗模拟软件Design Bui...寒冷地区居住建筑供暖能耗占建筑总能耗很大比例,降低供暖能耗是实现建筑节能的关键之一。以郑州地区高层住宅为例,从与供暖能耗密切相关的体形系数、外围护结构热工性能和气密性三方面进行了优化设计,并利用建筑能耗模拟软件Design Builder对优化前后的供暖能耗进行了量化分析。结果表明通过体形系数、外围护结构和气密性的优化,建筑供暖能耗可分别降低2.29%、16.05%和15.14%;优化后供暖总能耗由257 917 k W·h降低至178 967 k W·h,单位供暖能耗由44.89 k W·h/m2降低至31.15 k W·h/m2,降低了30.60%。研究成果为我国寒冷地区高层住宅的节能设计提供了参考。展开更多
Proceeding from the specific characteristics of PAL television signals adopted in China this paper points out that if the fs = 2fsc of sub-Nyquist sampling and DPCM encoding is used for PAL complete signal and if the ...Proceeding from the specific characteristics of PAL television signals adopted in China this paper points out that if the fs = 2fsc of sub-Nyquist sampling and DPCM encoding is used for PAL complete signal and if the blanking time is utilized to transmit code of effective area, it is possible to transmit a color TV signal over PCM three-group channel.展开更多
To realize high-efficiency and sustainable exploration of the Jiyang depression at the stage of high exploration degree, a hydrocarbon accumulation-geological evaluation method is developed on the basis of current geo...To realize high-efficiency and sustainable exploration of the Jiyang depression at the stage of high exploration degree, a hydrocarbon accumulation-geological evaluation method is developed on the basis of current geologic knowledge and extent of fine exploration. The concept of "layer exploration unit" is proposed in the study, and it is defined as an exploration geological unit that has a relatively complete and unified tectonic system, sedimentary system and hydrocarbon migration & accumulation system in a tectonic layer or tectonic sublayer within a fault basin. Then, an approach to dividing and evaluating the "layer exploration unit" is developed. With this approach, the Jiyang depression is divided into 305 layer exploration units, thus helping realize precise and stereoscopic geological understanding and exploration deployment. Fine splitting of remaining resources and benefit evaluation of exploration targets are conducted by "layer exploration units". As a result, 66 efficient "layer exploration units" in four major areas(i.e. Paleogene upper Es4-Dongying Formation, Neogene Minghuazhen Formation-Guantao Formation, Paleozoic buried-hill, and Paleogene Kongdian Formation-lower Es4) are determined as the targets for obtaining more reserves and breakthroughs in the short and medium term.展开更多
文摘寒冷地区居住建筑供暖能耗占建筑总能耗很大比例,降低供暖能耗是实现建筑节能的关键之一。以郑州地区高层住宅为例,从与供暖能耗密切相关的体形系数、外围护结构热工性能和气密性三方面进行了优化设计,并利用建筑能耗模拟软件Design Builder对优化前后的供暖能耗进行了量化分析。结果表明通过体形系数、外围护结构和气密性的优化,建筑供暖能耗可分别降低2.29%、16.05%和15.14%;优化后供暖总能耗由257 917 k W·h降低至178 967 k W·h,单位供暖能耗由44.89 k W·h/m2降低至31.15 k W·h/m2,降低了30.60%。研究成果为我国寒冷地区高层住宅的节能设计提供了参考。
文摘Proceeding from the specific characteristics of PAL television signals adopted in China this paper points out that if the fs = 2fsc of sub-Nyquist sampling and DPCM encoding is used for PAL complete signal and if the blanking time is utilized to transmit code of effective area, it is possible to transmit a color TV signal over PCM three-group channel.
基金Supported by the China National Science and Technology Major Project(2016ZX05006-003)
文摘To realize high-efficiency and sustainable exploration of the Jiyang depression at the stage of high exploration degree, a hydrocarbon accumulation-geological evaluation method is developed on the basis of current geologic knowledge and extent of fine exploration. The concept of "layer exploration unit" is proposed in the study, and it is defined as an exploration geological unit that has a relatively complete and unified tectonic system, sedimentary system and hydrocarbon migration & accumulation system in a tectonic layer or tectonic sublayer within a fault basin. Then, an approach to dividing and evaluating the "layer exploration unit" is developed. With this approach, the Jiyang depression is divided into 305 layer exploration units, thus helping realize precise and stereoscopic geological understanding and exploration deployment. Fine splitting of remaining resources and benefit evaluation of exploration targets are conducted by "layer exploration units". As a result, 66 efficient "layer exploration units" in four major areas(i.e. Paleogene upper Es4-Dongying Formation, Neogene Minghuazhen Formation-Guantao Formation, Paleozoic buried-hill, and Paleogene Kongdian Formation-lower Es4) are determined as the targets for obtaining more reserves and breakthroughs in the short and medium term.