期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
锂金属电池用高浓度电解液体系研究进展 被引量:6
1
作者 吴晨 周颖 +3 位作者 朱晓龙 詹忞之 杨汉西 钱江锋 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第2期30-46,共17页
锂金属二次电池具有极高的能量密度,是下一代储能电池的研究热点。然而,金属锂负极在传统碳酸酯电解液1 mol·L^(−1) LiPF6-EC/DEC(ethylene carbonate/diethyl carbonate)中充放电时,存在严重的枝晶生长和循环效率低下等问题,阻碍... 锂金属二次电池具有极高的能量密度,是下一代储能电池的研究热点。然而,金属锂负极在传统碳酸酯电解液1 mol·L^(−1) LiPF6-EC/DEC(ethylene carbonate/diethyl carbonate)中充放电时,存在严重的枝晶生长和循环效率低下等问题,阻碍了其商业化应用。因此,开发与锂负极兼容的新型电解液体系是目前重要的研究任务。与传统稀溶液相比,高浓度电解液体系具有独有的物化性质和优异的界面相容性,并且能有效抑制锂枝晶生长、显著提升锂负极的循环可逆性,因而格外受到关注。本文综述了高浓度电解液及局部高浓电解液体系的最新研究进展,分析了其溶液化学结构和物化性质,对其与锂负极的界面相容性、枝晶抑制效果、效率提升能力及界面稳定性机制进行了探讨;文章着重介绍了高浓与局部高浓电解液体系在锂金属二次电池中的应用,同时从基础科学研究和应用研究两个层面对高浓电解液和局部高浓电解液存在的主要问题进行了简要分析,并对其未来发展方向进行了展望。 展开更多
关键词 锂金属电池 高浓度电解液 局部高浓电解液 电解液溶剂化结构 界面性质
下载PDF
Na_(3)V_(2)(PO_(4))_(3)@C用作水系锌离子电池正极材料的研究 被引量:7
2
作者 衡永丽 谷振一 +1 位作者 郭晋芝 吴兴隆 《储能科学与技术》 CAS CSCD 北大核心 2021年第3期938-944,共7页
水系锌离子电池(AZIBs)是未来大型储能领域中具有吸引力的选择之一。但合适的用于锌离子存储的正极材料少之又少。本工作以NASICON结构的正极材料Na_(3)V_(2)(PO_(4))_(3)(NVP)作为储锌正极材料,在高浓度的电解液中可以实现高效的Zn^(2+... 水系锌离子电池(AZIBs)是未来大型储能领域中具有吸引力的选择之一。但合适的用于锌离子存储的正极材料少之又少。本工作以NASICON结构的正极材料Na_(3)V_(2)(PO_(4))_(3)(NVP)作为储锌正极材料,在高浓度的电解液中可以实现高效的Zn^(2+)存储并展现出超长的循环性能。本研究采用简单的溶胶凝胶法制备出均匀碳包覆的NVP,并借助X射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电等表征测试手段,分析NVP材料的结构、形貌和用作AZIBs正极时表现出的电化学性能。同时,本工作研究了不同浓度的电解液对电化学性能的影响。结果表明,电解液浓度提升后NVP材料可以展现出更高的容量存储、卓越的倍率性能和超长的循环寿命。在2000 mA/g的超高电流密度下循环1000圈之后,容量保持率仍为77.8%,并且在循环过程中材料的每圈库仑效率接近100%。此外,通过循环伏安法(CV)和恒电流间歇滴定法(GITT)进一步探索了NVP电极的动力学过程并得出,NVP材料出色的电化学性能的表现归因于其稳定和开放的NASICON框架和优异的动力学行为。 展开更多
关键词 水系锌离子电池 正极材料 磷酸钒钠 高浓度电解液 长循环寿命
下载PDF
Advanced Nonflammable Localized High-Concentration Electrolyte For High Energy Density Lithium Battery 被引量:6
3
作者 Mengmin Jia Chi Zhang +5 位作者 Yawei Guo Linshan Peng Xiaoyan Zhang Weiwei Qian Lan Zhang Suojiang Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1294-1302,共9页
The key to realize long-life high energy density lithium batteries is to exploit functional electrolytes capable of stabilizing both high voltage cathode and lithium anode.The emergence of localized high-concentration... The key to realize long-life high energy density lithium batteries is to exploit functional electrolytes capable of stabilizing both high voltage cathode and lithium anode.The emergence of localized high-concentration electrolytes(LHCEs)shows great promise for ameliorating the above-mentioned interfacial issues.In this work,a lithium difluoro(oxalate)borate(LiDFOB)based nonflammable dual-anion LHCE is designed and prepared.Dissolving in the mixture of trimethyl phosphate(TMP)/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether(D_(2)),the continuously consumption of LiDFOB is suppressed by simply introducing lithium nitrate(LiNO_(3)).Meantime,as most of the TMP molecular are coordinated with Li^(+),the electrolyte does not show incompatibility issue between neither metal lithium nor graphite anode.Therefore,it demonstrates excellent capability in stabilizing the interface of Ni-rich cathode and regulating lithium deposition morphology.The Li||LiNi_(0.87)Co_(0.08)Mn_(0.05)O_(2)(NCM87)batteries exhibit high capacity retention of more than 90%after 200 cycles even under the high cutoff voltage of 4.5 V,1 C rate.This study offers a prospective method to develop safe electrolytes suitable for high voltage applications,thus providing higher energy densities. 展开更多
关键词 dual-anion lithium metal battery localized high-concentration electrolyte NONFLAMMABLE phosphate
下载PDF
Localized high-concentration electrolytes for lithium metal batteries:progress and prospect 被引量:2
4
作者 Jia-Xin Guo Wen-Bo Tang +4 位作者 Xiaosong Xiong He Liu Tao Wang Yuping Wu Xin-Bing Cheng 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第10期1354-1371,共18页
With the increasing development of digital devices and electric vehicles,high energy-density rechargeable batteries are strongly required.As one of the most promising anode materials with an ultrahigh specific capacit... With the increasing development of digital devices and electric vehicles,high energy-density rechargeable batteries are strongly required.As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential,lithium metal is greatly considered an ideal candidate for nextgeneration battery systems.Nevertheless,limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability.Tremendous efforts have been explored to address these challenges,mainly focusing on the design of novel electrolytes.Here,we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries.Firstly,the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed.Then,the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium,broaden the voltage window of electrolytes,enhance safety,and render low-temperature operation for robust lithium metal batteries are discussed.Lastly,the remaining challenges and further possible research directions for localized highconcentration electrolytes are outlined,which can promisingly render the practical applications of lithium metal batteries. 展开更多
关键词 high-concentration electrolyte localized high-concentration electrolyte lithium metal battery solid electrolyte interphase DENDRITE
原文传递
Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode 被引量:4
5
作者 Hao-Jie Liang Zhen-Yi Gu +8 位作者 Xin-Xin Zhao Jin-Zhi Guo Jia-Lin Yang Wen-Hao Li Bao Li Zhi-Ming Liu Zhong-Hui Sun Jing-Ping Zhang Xing-Long Wu 《Science Bulletin》 SCIE EI CAS CSCD 2022年第15期1581-1588,M0004,共9页
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction... Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution. 展开更多
关键词 Graphite anode K-ion batteries Localized high-concentration electrolyte Interphase modification
原文传递
Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries 被引量:1
6
作者 Chengzong Li Yan Li +3 位作者 Ziyu Chen Yongchao Zhou Fengwei Bai Tao Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期327-331,共5页
Localized high-concentration electrolytes(LHCE) have shown good compatibility with high-voltage lithium(Li)-metal batteries, but their practicality is yet to be proved in terms of cost and safety. Here we develop a hy... Localized high-concentration electrolytes(LHCE) have shown good compatibility with high-voltage lithium(Li)-metal batteries, but their practicality is yet to be proved in terms of cost and safety. Here we develop a hybrid-LHCE with favorable integrated properties by combining the merits of two representative diluents, fluorobenzene(FB) and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether(TFE). Specifically,the extremely cheap and lightweight FB significantly reduces the cost and density of electrolyte, while the fire-retardant TFE circumvents the flammable nature of FB and thus greatly improves the safety of electrolyte. Moreover, the FB–TFE mixture enhances the thermodynamic stability of hybrid-LHCE and renders a controllable defluorination of FB, contributing to the formation of a thin and durable inorganic-rich solid electrolyte interphase(SEI) with rapid ion-transport kinetics. Benefiting from the designed hybridLHCE, a Li|NCM523 battery demonstrates excellent cycling performance(215 cycles, 91% capacity retention) under challenging conditions of thin Li-anode(30 μm) and high cathode loading(3.5 m Ah/cm^(2)). 展开更多
关键词 Localized high-concentration electrolyte high-voltage lithium-metal batteries Solid electrolyte interphase electrolyte Ion-transport kinetics
原文传递
Outstanding performances of graphite||NMC622 pouch cells enabled by a non-inert diluent 被引量:2
7
作者 Qinqin Cai Hao Jia +5 位作者 Guanjie Li Zhangyating Xie Xintao Zhou Zekai Ma Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期593-602,I0013,共11页
Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with ... Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with electrode materials limit its large-scale application.Generally,localized high concentration electrolyte(LHCE)is obtained by introducing an electrochemically inert diluent into HCE to avoid the above-mentioned problems while maintaining the high interphasial stability of HCE with graphite anode.Unlike traditional inert diluents,1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluropropyl ether(TTE)with electrochemical activity is introduced into propylene carbonate(PC)-based HCE to obtain LHCE-2(1 M LiPF_(6),PC:DMC:TTE=1:1:6.1)herein.Experimental and theoretical simulation results show that TTE participates in the oxidation decomposition and film-forming reaction at the NCM622 cathode surface,conducting a cathode electrolyte interphase(CEI)rich in organic fluorides with excellent electron insulation ability,high structural stability and low interphasial impedance.Thanks to the outstanding interphasial properties induced by LHCE-2,the graphite||NMC622 pouch cell reaches a capacity retention of 80%after 500 cycles at 1 C under room temperature.While at sub-zero temperatures,the capacity released by the cell with LHCE-2 electrolyte is significantly higher than that of HCE and conventional EC-based electrolytes.Meanwhile,the LHCE-2 electrolyte inherits the advantages of TTE flame-resistant,thus improving the safety of the battery. 展开更多
关键词 Lithium-ion batteries Propylene carbonate Localized high-concentration electrolyte Non-Inert diluent Graphite||NMC622 pouch cells
下载PDF
An all-organic aqueous potassium dual-ion battery 被引量:2
8
作者 Junmin Ge Xianhui Yi +1 位作者 Ling Fan Bingan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期28-33,I0002,共7页
Benefiting from the environmental friendliness of organic electrodes and the high security of aqueous electrolyte,an all-organic aqueous potassium dual-ion full battery(APDIB) was assembled with 21 M potassium bis(flu... Benefiting from the environmental friendliness of organic electrodes and the high security of aqueous electrolyte,an all-organic aqueous potassium dual-ion full battery(APDIB) was assembled with 21 M potassium bis(fluoroslufonyl)imide(KFSI) water-in-salt as the electrolyte.The APDIB could deliver a reversible capacity of around 50 mAh g^(-1) at 200 mA g^(-1)(based on the weight of total active materials),a long cycle stability over 900 cycles at 500 mA g^(-1) and a high coulombic efficiency of 98.5%.The reaction mechanism of APDIB during the charge/discharge processes is verified:the FSI-could associate/disassociate with the nitrogen atom in the polytriphenylamine(PTPAn) cathode,while the K^(+) could react with C=O bonds in the 3,4,9,10-perylenetetracarboxylic diimide(PTCDI) anode reversibly.Our work contributes toward the understanding the nature of water-into-salt electrolyte and successfully constructed all-organic APDIB. 展开更多
关键词 All-organic electrode Potassium ion battery Dual-ion full battery Aqueous high concentration electrolyte high safety
下载PDF
Regulating solid electrolyte interphases on phosphorus/carbon anodes via localized high-concentration electrolytes for potassium-ion batteries 被引量:1
9
作者 Wei Xiao Peiyi Shi +7 位作者 Zhengkui Li Chong Xie Jian Qin Huijuan Yang Jingjing Wang Wenbin Li Jiujun Zhang Xifei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期589-605,I0016,共18页
The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dea... The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs. 展开更多
关键词 Potassium-ion batteries Phosphorus/carbon anodes Localized high-concentration electrolytes Solid electrolyte interphases Interfacial stability
下载PDF
Diluent decomposition-assisted formation of Li F-rich solid-electrolyte interfaces enables high-energy Li-metal batteries 被引量:1
10
作者 Junbo Zhang Haikuo Zhang +9 位作者 Ruhong Li Ling Lv Di Lu Shuoqing Zhang Xuezhang Xiao Shujiang Geng Fuhui Wang Tao Deng Lixin Chen Xiulin Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期71-79,I0003,共10页
Passivation by the inorganic-rich solid electrolyte interphase(SEI),especially the LiF-rich SEI,is highly desirable to guarantee the durable lifespan of Li metal batteries(LMBs).Here,we report a diluent with the capab... Passivation by the inorganic-rich solid electrolyte interphase(SEI),especially the LiF-rich SEI,is highly desirable to guarantee the durable lifespan of Li metal batteries(LMBs).Here,we report a diluent with the capability to facilitate the formation of LiF-rich SEI while avoiding the excess consumption of Li salts.Dissimilar to most of reported inert diluents,heptafluoro-l-methoxypropane(HM) is firstly demonstrated to cooperate with the decomposition of anions to generate LiF-rich SEI via releasing Fcontaining species near Li surface.The designed electrolyte consisting of 1.8 M LiFSI in the mixture of1,2-dimethoxyethane(DME)/HM(2:1 by vol.) achieves excellent compatibility with both Li metal anodes(Coulombic efficiency~99.8%) and high-voltage cathodes(4.4 V LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) and 4.5 V LiCoO_(2)(LCO) vs Li^(+)/Li).The 4.4 V Li(20μm)‖NMC811(2.5 mA h cm^(-2)) and 4.5 V Li(20μm)‖LCO(2.5 mA h cm^(-2)) cells achieve capacity retentions of 80% over 560 cycles and 80% over 505 cycles,respectively.Meanwhile,the anode-free pouch cell delivers an energy density of~293 W h kg^(-1)initially and retains 70% of capacity after 100 deep cycles.This work highlights the critical impact of diluent on the SEI formation,and opens up a new direction for designing desirable interfacial chemistries to enable high-performance LMBs. 展开更多
关键词 DILUENT Solvation structure LiF-rich SEI Li metal batteries Localized high-concentration electrolyte
下载PDF
Interfacial high-concentration electrolyte for stable lithium metal anode:Theory,design,and demonstration 被引量:1
11
作者 Haotian Lu Chunpeng Yang +4 位作者 Feifei Wang Lu Wang Jinghong Zhou Wei Chen Quan-Hong Yang 《Nano Research》 SCIE EI CSCD 2023年第6期8321-8328,共8页
Lithium metal anodes hold great potential for high-energy-density secondary batteries.However,the uncontrollable lithium dendrite growth causes poor cycling efficiency and severe safety concerns,hindering lithium meta... Lithium metal anodes hold great potential for high-energy-density secondary batteries.However,the uncontrollable lithium dendrite growth causes poor cycling efficiency and severe safety concerns,hindering lithium metal anode from practical application.Electrolyte components play important roles in suppressing lithium dendrite growth and improving the electrochemical performance of long-life lithium metal anode,and it is still challenging to effectively compromise the advantages of the conventional electrolyte(1 mol·L^(−1)salts)and high-concentration electrolyte(>3 mol·L^(−1)salts)for the optimizing electrochemical performance.Herein,we propose and design an interfacial high-concentration electrolyte induced by the nitrogen-and oxygen-doped carbon nanosheets(NO-CNS)for stable Li metal anodes.The NO-CNS with abundant surface negative charges not only creates an interfacial high-concentration of lithium ions near the electrode surface to promote chargetransfer kinetics but also enables a high ionic conductivity in the bulk electrolyte to improve ionic mass-transfer.Benefitting from the interfacial high-concentration electrolyte,the NO-CNS@Ni foam host presents outstanding electrochemical cycling performances over 600 cycles at 1 mA·cm^(−2) and an improved cycling lifespan of 1,500 h for symmetric cells. 展开更多
关键词 lithium metal anode dendrite growth interfacial high-concentration electrolyte surface negative charge
原文传递
Mechanism of high-concentration electrolyte inhibiting the destructive effect of Mn(Ⅱ)on the performance of lithium-ion batteries 被引量:1
12
作者 Xiaoling Cui Jinlong Sun +10 位作者 Dongni Zhao Jingjing Zhang Jie Wang Hong Dong Peng Wang Junwei Zhang Shumin Wu Linhu Song Ningshuang Zhang Chunlei Li Shiyou Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期381-392,I0011,共13页
By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteri... By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteries.At present,it is generally believed the formation of an effective interfacial film on the surface of the anode electrode is the leading factor in reducing the dissolution of TMIs and prevent TMIs from being embedded in the electrode.It ignores the influence of the solvation structures in the electrolyte system with different composition,and is not conducive to the design of the electrolyte formulation from the perspective of changing the concentration and the preferred solvent to inhibit the degradation of battery performance caused by TMIs deposition.In this work,by analyzing the special solvation structures of the high-concentra tion electrolyte,we study the main reason why high-concentration electrolyte inhibits the destructive effect of Mn(Ⅱ) on the electrochemical performance of LIBs.By combining the potentialresolved in-situ electrochemical impedance spectroscopy technology(PRIs-EIS) and density functional theory(DFT) calculation,we find that Mn(Ⅱ) mainly exists in the form of contact ions pairs(CIPs) and aggregates(AGGs) in high-concentration electrolyte.These solvation structures can reduce the destructive effect of Mn(Ⅱ) on battery performance from two aspects:on the one hand,it can rise the lowest unoccupied orbital(LUMO) value of the solvation structures of Mn(Ⅱ),thereby reducing the chance of its reduction;on the other hand,the decrease of Mn2+ions reduction can reduce the deposition of metallic manganese in the solid electrolyte interphase(SEI),thereby avoiding the continuous growth of the SEI.This study can be provided inspiration for the design of electrolytes to inhibit the destructive effect of TMls on LIBs. 展开更多
关键词 Lithium-ion battery high-concentration electrolyte Manganese deposition Solvation structures
下载PDF
PDCA循环在高浓度电解质管理中的应用 被引量:2
13
作者 萧灿荣 王功顺 梁达成 《中国当代医药》 2019年第15期154-157,共4页
对基层医疗机构的高浓度电解质进行完善管理,促进安全用药,降低高危药品用药差错的发生.运用PDCA管理工具,通过多部门协调机制,以规范高浓度电解质管理制度、制定高浓度电解质目录、对高浓度电解质各环节进行规范化及同质化管理.建立了... 对基层医疗机构的高浓度电解质进行完善管理,促进安全用药,降低高危药品用药差错的发生.运用PDCA管理工具,通过多部门协调机制,以规范高浓度电解质管理制度、制定高浓度电解质目录、对高浓度电解质各环节进行规范化及同质化管理.建立了以患者安全为核心的高浓度电解质管理规范,保证患者的安全合理用药,减少用药差错.结合医院自身医疗条件,开展高浓度电解质的规范管理,保证患者用药安全. 展开更多
关键词 高浓度电解质 PDCA循环 安全用药 药品管理 基层医疗 组织与管理
下载PDF
Lithium deposition behavior in hard carbon hosts:Optical microscopy and scanning electron microscopy study
14
作者 Ge Zhou Yulin Zhao +3 位作者 Chuan Hu Zhenzhen Ren Hong Li Liping Wang 《Nano Research》 SCIE EI CSCD 2023年第6期8368-8376,共9页
Lithium(Li)metal is an ideal anode for the next generation high-energy-density batteries.However,it suffers from dendrite growth,side reactions,and infinite relative volume change.Effective strategies are using porous... Lithium(Li)metal is an ideal anode for the next generation high-energy-density batteries.However,it suffers from dendrite growth,side reactions,and infinite relative volume change.Effective strategies are using porous carbons or surface modification carbons to guide Li deposition into their pores.While the Li deposition behavior is still ambiguous.Here,we systematically determine their deposition behavior in various surface-modified carbons and in different electrolytes via optical microscopy and scanning electron microscopy study.It is found that Li will not spontaneously deposit into the carbon pores,which is significantly dependent on the carbon surface,current density,areal capacity,and electrolyte.Thus,a“lithiophilic”modified commercial hard carbon with Ag is developed as a stable“host”and efficient surface protection derived from the localized high-concentration electrolyte exhibits a pretty low volume change(5.3%)during cycling at a current density of 2 mA·cm^(−2)and an areal capacity of 2 mAh·cm^(−2).This strategy addresses the volume change and dendrite problems by rationally designed host and electrolyte,providing a broad perspective for realizing Li-metal anode. 展开更多
关键词 lithium-metal anode lithium deposition behavior hard carbon host lithiophilic sites localized high-concentration electrolyte
原文传递
高浓度锂盐电解质的研究进展
15
作者 张江城 付翔南 +4 位作者 李泽通 刘波 姜雪敏 籍王阳 胥桂萍 《安徽化工》 CAS 2021年第6期1-6,共6页
电解质作为锂电池离子传导的重要介质,对于提升锂电池循环稳定性能、安全性能等方面起着至关重要的作用,而锂盐作为其电解质(电解液)的关键组分,当锂盐浓度较低时,存在易燃性高、热稳定性差、电极反应动力学缓慢等缺点,而高浓度锂盐电... 电解质作为锂电池离子传导的重要介质,对于提升锂电池循环稳定性能、安全性能等方面起着至关重要的作用,而锂盐作为其电解质(电解液)的关键组分,当锂盐浓度较低时,存在易燃性高、热稳定性差、电极反应动力学缓慢等缺点,而高浓度锂盐电解质具有热力学稳定性良好,Li+在电极上可进行可逆嵌入/脱出反应,离子载体密度较高,溶剂挥发性降低,提高SEI膜的热稳定性和抑制Al集流体腐蚀等优点,但也存在离子电导率低、润湿性差和材料成本高等问题,限制了商业化应用。概述了新型锂盐、高浓度锂盐电解质研究历程、溶剂化结构对界面性质的影响及高浓度电解质在锂电池体系中的应用,为解决高浓度锂盐电解质的局限性和加快商业化应用提供一些思路。 展开更多
关键词 锂电池 锂盐 高浓度电解质 溶剂化 局部高浓度
下载PDF
基于双盐高浓度电解液的高稳定性钠金属负极
16
作者 陶影 赵铃飞 +2 位作者 王云晓 曹余良 侴术雷 《储能科学与技术》 CAS CSCD 北大核心 2022年第4期1103-1109,共7页
钠金属被认为是下一代高能量密度、高功率密度储能器件中非常有前景的负极材料。然而钠金属一直面临着循环性差以及钠金属枝晶生长造成的安全隐患的困扰。为了提高钠金属负极的循环稳定性,我们研究了钠金属负极在双(氟磺酰)亚胺钠和双(... 钠金属被认为是下一代高能量密度、高功率密度储能器件中非常有前景的负极材料。然而钠金属一直面临着循环性差以及钠金属枝晶生长造成的安全隐患的困扰。为了提高钠金属负极的循环稳定性,我们研究了钠金属负极在双(氟磺酰)亚胺钠和双(三氟甲基磺酰)亚胺钠高浓度电解液中的性能。研究发现,通过将NaFSI和NaTFSI混合得到双盐高浓度电解液,钠金属负极可以实现相对于单一盐电解液显著提高的循环性能。电化学性能和循环后的形貌表征表明,高浓度双盐电解液可以防止电解液腐蚀集流体,而且还能在钠金属负极表面构建更稳定的界面层。本工作还使用这种双盐高浓度电解液组装了钠金属全电池并实现了稳定的循环性能,表明这种新型的电解液有非常好的实用化前景。 展开更多
关键词 双盐 高浓度 电解液 钠金属 负极
下载PDF
二次电池用局部高浓度电解质的研究进展与展望 被引量:8
17
作者 于喆 张建军 +4 位作者 刘亭亭 唐犇 杨晓燕 周新红 崔光磊 《化学学报》 SCIE CAS CSCD 北大核心 2020年第2期114-124,共11页
电解质作为二次电池离子传导的重要介质,对于提升二次电池循环稳定性能、安全性能等方面起着至关重要的作用.局部高浓度电解质是指在高浓度电解质中加入"稀释剂",形成盐的局部高浓度状态,既能兼具高浓度电解质的优异特性,又... 电解质作为二次电池离子传导的重要介质,对于提升二次电池循环稳定性能、安全性能等方面起着至关重要的作用.局部高浓度电解质是指在高浓度电解质中加入"稀释剂",形成盐的局部高浓度状态,既能兼具高浓度电解质的优异特性,又具有低成本和优良润湿性的特点,应用前景非常广阔.近几年,局部高浓度电解质在阻燃锂金属电池、高电压锂电池、低温锂电池、锂硫电池和钠电池等多方面应用广泛,且展现出非常好的使用效果.本综述重点从局部高浓度电解质的功能性应用角度出发,详细阐述了局部高浓度电解质的类型、制备、作用机理及其在不同二次电池中的功能性应用进展和主要研究现状,文末还对局部高浓度电解质的未来可能发展趋势进行了分析与展望. 展开更多
关键词 局部高浓度电解质 二次电池 功能性应用
原文传递
无负极锂金属电池在局部高浓度电解液中的产气研究
18
作者 郭姿珠 张睿 +3 位作者 孙旦 王海燕 黄小兵 唐有根 《化学学报》 SCIE CAS CSCD 北大核心 2024年第9期919-924,共6页
引入局部高浓电解液(LHCE)是提升金属锂负极循环稳定性的重要方法之一.虽然该类电解液在提高无负极锂金属电池(AF-LMB)循环寿命方面已有报道,但是较少有研究关注电解液的分解反应和产气情况.本工作组装了软包全电池Cu||NCM712,研究了LHC... 引入局部高浓电解液(LHCE)是提升金属锂负极循环稳定性的重要方法之一.虽然该类电解液在提高无负极锂金属电池(AF-LMB)循环寿命方面已有报道,但是较少有研究关注电解液的分解反应和产气情况.本工作组装了软包全电池Cu||NCM712,研究了LHCE电解液浓度、工作温度以及充电截止电压对AF-LMB体系产气情况的影响.结合气相色谱、Raman光谱以及电化学测试,发现锂盐浓度是影响循环寿命和产气量的显著因子,提高锂盐浓度可以减少LHCE中自由溶剂分子的数量,抑制电解液的氧化分解和电池产气. 展开更多
关键词 无负极锂金属电池 局部高浓电解液 产气分析 溶剂化结构
原文传递
LLZTO复合PVDF-HFP基高盐聚合物固态电解质的制备及性能研究 被引量:1
19
作者 刘典 马清扬 +1 位作者 熊国垚 马宗仁 《信息记录材料》 2023年第4期7-10,共4页
本研究以钽掺杂锂镧锆氧(LLZTO)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)及双三氟甲烷磺酰亚胺锂(LiTFSI)等作为原料,使用刮涂法制得一种高盐聚合物固态电解质(LSE)。采用X射线衍射仪(XRD)、交流阻抗谱(EIS)、线性扫描伏安法(LSV)、恒压极化法... 本研究以钽掺杂锂镧锆氧(LLZTO)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)及双三氟甲烷磺酰亚胺锂(LiTFSI)等作为原料,使用刮涂法制得一种高盐聚合物固态电解质(LSE)。采用X射线衍射仪(XRD)、交流阻抗谱(EIS)、线性扫描伏安法(LSV)、恒压极化法等手段对高盐聚合物固态电解质进行表征和测试。研究发现,在室温条件下,LLZTO含量为20%(质量分数)的LSE_(0.20)离子电导率可达到4.5×10^(-4)S/cm,锂离子迁移数为0.48,电化学窗口可达到4.65 V。组装为LiFePO_(4)/LSE_(0.20)/Li全固态电池后,在室温条件下以0.2C充放电,电池的首次放电比容量为156.85 mAh/g。在50次充放电循环后,该电解质的放电比容量仅下降约3%,高达152.34 mAh/g,容量保持率可达到97%。 展开更多
关键词 锂离子电池 高盐聚合物固态电解质 活性填料 LLZTO PVDF-HFP
下载PDF
高电压锂金属二次电池用离子型局部高浓电解液
20
作者 段佳宁 柳雅晴 +3 位作者 范镜敏 袁汝明 郑明森 董全峰 《电池》 CAS 北大核心 2023年第2期119-126,共8页
基于有机离子盐(离子液体或离子塑性晶体)的离子型局部高浓电解液(iLHCEs)可用于高性能锂金属二次电池,但Li+传导能力、与锂金属负极和高电压正极的兼容性等需优化。使用有机离子塑性晶体N-乙基-N-甲基吡咯烷鎓双(三氟甲基磺酰)亚胺盐(P... 基于有机离子盐(离子液体或离子塑性晶体)的离子型局部高浓电解液(iLHCEs)可用于高性能锂金属二次电池,但Li+传导能力、与锂金属负极和高电压正极的兼容性等需优化。使用有机离子塑性晶体N-乙基-N-甲基吡咯烷鎓双(三氟甲基磺酰)亚胺盐(Pyr12TFSI)构筑iLHCEs,形成的[Li^(+)][FSI-][TFSI-][Pyr12^(+)]紧密离子簇可衍生稳定的固体电解质相界面(SEI),抑制副反应发生与锂枝晶生成,使锂沉积/剥离的库仑效率高达99.03%。使用基于Pyr12TFSI的iLHCEs的高电压Li|LiCoO_(2)(4.5 V)及Li|LiNi_(0.5)Mn_(1.5)O_(4)(5.0 V)电池,具有较高的首次库仑效率、长循环稳定性及理想的倍率性能。 展开更多
关键词 局部高浓电解液 有机离子塑性晶体 离子液体 高电压电池 锂金属二次电池
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部