There is a significant seasonal variation in the seeing of Fuxian Solar Observatory(FSO). The seeing in summer and autumn is better than that in winter and spring. The overall seeing is divided into the boundary layer...There is a significant seasonal variation in the seeing of Fuxian Solar Observatory(FSO). The seeing in summer and autumn is better than that in winter and spring. The overall seeing is divided into the boundary layer seeing and free atmosphere seeing to investigate the climatic phenomena or meteorological events that might lead to seasonal variation in the seeing. The overall seeing was measured by the solar difference image motion monitor(SDIMM). The boundary layer seeing is calculated from the temperature difference between air and water. The analysis results show that the seasonal variation in seeing is caused by the alternation of subtropical high and westerly jet. The decrease of seeing in winter and spring at FSO is probably related to the westerly jet. A complete analysis of the seeing at FSO is given in this paper. It is also the first time to describe FSO's boundary layer seeing and its measurement method.展开更多
The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits(the PECMEO concept) is a promising way to acquire the image of the"shadow"of the event horizon of Sagittarius A*with...The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits(the PECMEO concept) is a promising way to acquire the image of the"shadow"of the event horizon of Sagittarius A*with an angular resolution of circa 5 microarcseconds. The concept is intended to decrease the size of the main reflector of the instrument to about 3 m using a precise orbit reconstruction based on Global Navigation Satellite System (GNSS) navigation, inter-satellite range and range-rate measurements, and data from the Attitude and Orbit Determination System (AODS). The paper provides the current progress on the definition of the subsystems required for the concept on the basis of simulations, radio regulations, and available technology. The paper proposes the requirement for the localization of the phase centre of the main reflector. The paper provides information about the visibility of GNSS satellites and the needed accuracies of the AODS. The paper proposes the frequency plan for the instrument and its Inter-Satellite Links (ISLs).The concepts for measurement of range and range-rate using ISLs (as well as for the data exchange at these ISLs) are presented. The block diagram of the interferometer is described and its sensitivity is estimated. The link budget for both ISLs is given as well as their critical components. The calculated measurement quality factors are given. The paper shows the expected performance of the sub-systems of the interferometer. The requirements for the localization of the main reflectors and the information about the availability of the GNSS satellites are based on the simulations results. The frequency plan is obtained according to the PECMEO concept and taking into account the radio regulations. The existing technology defines the accuracies of the AODS, both the link budgets and the fundamental measurement accuracies for ISLs, and the sensitivity of the instrument. The paper provides input information for the development of the orbit reconstruction filter and the whole PECMEO system展开更多
A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light fr...A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.展开更多
We developed a tip-tilt system to compensate the turbulence induced image motion for the 1.3 m telescope at Vainu Bappu Observatory,at Kavalur.The instrument is designed to operate at the visible wavelength band(480-7...We developed a tip-tilt system to compensate the turbulence induced image motion for the 1.3 m telescope at Vainu Bappu Observatory,at Kavalur.The instrument is designed to operate at the visible wavelength band(480-700 nm)with a field of view of 1′×1′.The tilt corrected images have demonstrated up to ≈57% improvement in image resolution and a corresponding peak intensity increase by a factor of ≈2.8.A closed-loop correction bandwidth of ≈26 Hz has been achieved with on-sky tests and the root mean square motion of the star image has been reduced by a factor of ~14.These results are consistent with theoretical and numerical predictions of wave-front aberrations caused by atmospheric turbulence and image quality improvement expected from a real-time control system.In this paper,we present details of the instrument design,laboratory calibration studies and quantify its performance on the telescope.展开更多
The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the i...The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.展开更多
The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including me...The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.展开更多
As one of the three payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is composed of three instruments:a Solar Corona Imager(SCI),a LyαSolar Disk Imager(SD...As one of the three payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is composed of three instruments:a Solar Corona Imager(SCI),a LyαSolar Disk Imager(SDI)and a full-disk White-light Solar Telescope(WST).When working in-orbit,LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R⊙(R⊙stands for the mean solar radius)with a spatial resolution of 4.8′′and 1.2′′for coronal and disk observations,respectively,and a temporal resolution of 30–120 s and 1–120 s for coronal and disk observations,respectively.The maximum exposure time can be up to20 s due to precise pointing and image stabilization function.Among the three telescopes of LST,SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Lyα(121.6±10 nm)line and white light(WL)(700±40 nm)wavebands by using a narrowband Lyαbeam splitter and has a field of view(FOV)from 1.1 to 2.5 R⊙.The stray-light suppression level can attain<10^-6 B⊙(B⊙is the mean brightness of the solar disk)at 1.1 R⊙and≤5×10^-8 B⊙at 2.5 R⊙.SDI and WST are solar disk imagers working in the Lyαline and 360.0 nm wavebands,respectively,which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R⊙,covering the inner coronal edge area and relating to coronal imaging.We present the up-to-date design for the LST payload.展开更多
The morphology and kinematics of the spiral structure of the Milky Way are long-standing problems in astrophysics.In this review we firstly summarize various methods with different tracers used to solve this puzzle.Th...The morphology and kinematics of the spiral structure of the Milky Way are long-standing problems in astrophysics.In this review we firstly summarize various methods with different tracers used to solve this puzzle.The astrometry of Galactic sources is gradually alleviating this difficult situation caused mainly by large distance uncertainties, as we can currently obtain accurate parallaxes(a few μas) and proper motions(≈1 km s-1) by using Very Long Baseline Interferometry(VLBI).On the other hand, the Gaia mission is providing the largest, uniform sample of parallaxes for O-type stars in the entire Milky Way.Based upon the VLBI maser and Gaia O-star parallax measurements, nearby spiral structures of the Perseus, Local, Sagittarius and Scutum Arms are determined in unprecedented detail.Meanwhile, we estimate fundamental Galactic parameters of the distance to the Galactic center,R0, to be 8.35 ± 0.18 kpc, and circular rotation speed at the Sun, Θ0, to be 240±10 km s-1.We found kinematic differences between O stars and interstellar masers: the O stars, on average, rotate faster,>8 km s-1than maser-traced high-mass star forming regions.展开更多
The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable ...The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the ab- solute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corre- sponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06" and 45 nm, respectively. The results of on-sky testing obser- vations demonstrate better contrast and finer structures of the images taken with AO than those without AO.展开更多
We propose a high-contrast coronagraph for direct imaging of young Jupiter-like planets orbiting nearby bright stars. The coronagraph employs a step- transmission filter in which the intensity is apodized with a finit...We propose a high-contrast coronagraph for direct imaging of young Jupiter-like planets orbiting nearby bright stars. The coronagraph employs a step- transmission filter in which the intensity is apodized with a finite number of steps with identical transmission in each step. It should be installed on a large ground-based telescope equipped with a state-of-the-art adaptive optics system. In this case, contrast ratios around 10-6 should be accessible within 0.1 arcsec of the central star. In recent progress, a coronagraph with a circular apodizing filter has been developed, which can be used for a ground-based telescope with a central obstruction and spider structure. It is shown that ground-based direct imaging of Jupiter-like planets is promising with current technology.展开更多
基金supported by the National Natural Science Foundation of China (U1831210)Yunnan University first-class discipline construction fund (C176210215)the talents program of Yunnan province
文摘There is a significant seasonal variation in the seeing of Fuxian Solar Observatory(FSO). The seeing in summer and autumn is better than that in winter and spring. The overall seeing is divided into the boundary layer seeing and free atmosphere seeing to investigate the climatic phenomena or meteorological events that might lead to seasonal variation in the seeing. The overall seeing was measured by the solar difference image motion monitor(SDIMM). The boundary layer seeing is calculated from the temperature difference between air and water. The analysis results show that the seasonal variation in seeing is caused by the alternation of subtropical high and westerly jet. The decrease of seeing in winter and spring at FSO is probably related to the westerly jet. A complete analysis of the seeing at FSO is given in this paper. It is also the first time to describe FSO's boundary layer seeing and its measurement method.
文摘The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits(the PECMEO concept) is a promising way to acquire the image of the"shadow"of the event horizon of Sagittarius A*with an angular resolution of circa 5 microarcseconds. The concept is intended to decrease the size of the main reflector of the instrument to about 3 m using a precise orbit reconstruction based on Global Navigation Satellite System (GNSS) navigation, inter-satellite range and range-rate measurements, and data from the Attitude and Orbit Determination System (AODS). The paper provides the current progress on the definition of the subsystems required for the concept on the basis of simulations, radio regulations, and available technology. The paper proposes the requirement for the localization of the phase centre of the main reflector. The paper provides information about the visibility of GNSS satellites and the needed accuracies of the AODS. The paper proposes the frequency plan for the instrument and its Inter-Satellite Links (ISLs).The concepts for measurement of range and range-rate using ISLs (as well as for the data exchange at these ISLs) are presented. The block diagram of the interferometer is described and its sensitivity is estimated. The link budget for both ISLs is given as well as their critical components. The calculated measurement quality factors are given. The paper shows the expected performance of the sub-systems of the interferometer. The requirements for the localization of the main reflectors and the information about the availability of the GNSS satellites are based on the simulations results. The frequency plan is obtained according to the PECMEO concept and taking into account the radio regulations. The existing technology defines the accuracies of the AODS, both the link budgets and the fundamental measurement accuracies for ISLs, and the sensitivity of the instrument. The paper provides input information for the development of the orbit reconstruction filter and the whole PECMEO system
基金supported by a Grant-in-Aid for Scientific Research (No. 24540231)supported by the U.S. National Science Foundation under Award (No. 1009203)
文摘A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.
文摘We developed a tip-tilt system to compensate the turbulence induced image motion for the 1.3 m telescope at Vainu Bappu Observatory,at Kavalur.The instrument is designed to operate at the visible wavelength band(480-700 nm)with a field of view of 1′×1′.The tilt corrected images have demonstrated up to ≈57% improvement in image resolution and a corresponding peak intensity increase by a factor of ≈2.8.A closed-loop correction bandwidth of ≈26 Hz has been achieved with on-sky tests and the root mean square motion of the star image has been reduced by a factor of ~14.These results are consistent with theoretical and numerical predictions of wave-front aberrations caused by atmospheric turbulence and image quality improvement expected from a real-time control system.In this paper,we present details of the instrument design,laboratory calibration studies and quantify its performance on the telescope.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173038 and 11103022)the Tsinghua University Initiative Scientific Research Program (Grant No. 20111081102)
文摘The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.
基金Supported by the National Natural Science Foundation of China
文摘The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.
基金supported by Chinese Academy of Sciences (CAS)supported by the National Natural Science Foundation of China (Grant Nos. 11427803, U1731241, U1731114 and U1531106)the CAS Strategic Pioneer Program on Space Science (Grant Nos. XDA04076100, XDA15052200, XDA15320103 and XDA15320301)
文摘As one of the three payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is composed of three instruments:a Solar Corona Imager(SCI),a LyαSolar Disk Imager(SDI)and a full-disk White-light Solar Telescope(WST).When working in-orbit,LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R⊙(R⊙stands for the mean solar radius)with a spatial resolution of 4.8′′and 1.2′′for coronal and disk observations,respectively,and a temporal resolution of 30–120 s and 1–120 s for coronal and disk observations,respectively.The maximum exposure time can be up to20 s due to precise pointing and image stabilization function.Among the three telescopes of LST,SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Lyα(121.6±10 nm)line and white light(WL)(700±40 nm)wavebands by using a narrowband Lyαbeam splitter and has a field of view(FOV)from 1.1 to 2.5 R⊙.The stray-light suppression level can attain<10^-6 B⊙(B⊙is the mean brightness of the solar disk)at 1.1 R⊙and≤5×10^-8 B⊙at 2.5 R⊙.SDI and WST are solar disk imagers working in the Lyαline and 360.0 nm wavebands,respectively,which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R⊙,covering the inner coronal edge area and relating to coronal imaging.We present the up-to-date design for the LST payload.
基金sponsored by the MOST (Grant No.2017YFA0402701)the NSFC (Grant Nos.11873019, 11673066 and 11503033)+4 种基金the CAS (Grant No.QYZDJ-SSW-SLH047)the Youth Innovation Promotion Association of CASsupported by the Key Laboratory for Radio Astronomy, CASthe Open Project Program of the Key Laboratory of FAST, NAOC, CASFunding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement
文摘The morphology and kinematics of the spiral structure of the Milky Way are long-standing problems in astrophysics.In this review we firstly summarize various methods with different tracers used to solve this puzzle.The astrometry of Galactic sources is gradually alleviating this difficult situation caused mainly by large distance uncertainties, as we can currently obtain accurate parallaxes(a few μas) and proper motions(≈1 km s-1) by using Very Long Baseline Interferometry(VLBI).On the other hand, the Gaia mission is providing the largest, uniform sample of parallaxes for O-type stars in the entire Milky Way.Based upon the VLBI maser and Gaia O-star parallax measurements, nearby spiral structures of the Perseus, Local, Sagittarius and Scutum Arms are determined in unprecedented detail.Meanwhile, we estimate fundamental Galactic parameters of the distance to the Galactic center,R0, to be 8.35 ± 0.18 kpc, and circular rotation speed at the Sun, Θ0, to be 240±10 km s-1.We found kinematic differences between O stars and interstellar masers: the O stars, on average, rotate faster,>8 km s-1than maser-traced high-mass star forming regions.
基金funded by the National Natural Science Foundation of China(Grant No.11178004)
文摘The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the ab- solute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corre- sponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06" and 45 nm, respectively. The results of on-sky testing obser- vations demonstrate better contrast and finer structures of the images taken with AO than those without AO.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 10873024)
文摘We propose a high-contrast coronagraph for direct imaging of young Jupiter-like planets orbiting nearby bright stars. The coronagraph employs a step- transmission filter in which the intensity is apodized with a finite number of steps with identical transmission in each step. It should be installed on a large ground-based telescope equipped with a state-of-the-art adaptive optics system. In this case, contrast ratios around 10-6 should be accessible within 0.1 arcsec of the central star. In recent progress, a coronagraph with a circular apodizing filter has been developed, which can be used for a ground-based telescope with a central obstruction and spider structure. It is shown that ground-based direct imaging of Jupiter-like planets is promising with current technology.